
Rafael Muffato Reis

Towards quantum control of levitated
mesoscopic particles

Tese de Doutorado

Thesis presented to the Programa de Pós–graduação em Física of
PUC-Rio in partial fulfillment of the requirements for the degree
of Doutor em Ciências - Física.

Advisor: Prof. Thiago Barbosa dos Santos Guerreiro

Rio de Janeiro
February 2025



Rafael Muffato Reis

Towards quantum control of levitated
mesoscopic particles

Thesis presented to the Programa de Pós–graduação em Física of
PUC-Rio in partial fulfillment of the requirements for the degree
of Doutor em Ciências - Física. Approved by the Examination
Committee:

Prof. Thiago Barbosa dos Santos Guerreiro
Advisor

Departamento de Física – PUC-Rio

Prof. Antonio Zelaquett Khoury
UFF

Prof. Paulo Américo Maia Neto
UFRJ

Prof. Thiago Pedro Mayer Alegre
UNICAMP

Prof. Hendrik Ulbrichit
University of Southampton

Rio de Janeiro, February 4th, 2025



All rights reserved.

Rafael Muffato Reis

Graduated in physics by the Universidade Estadual de Maringá.

Bibliographic data
Reis, Rafael Muffato

Towards quantum control of levitated mesoscopic parti-
cles / Rafael Muffato Reis; advisor: Thiago Barbosa dos San-
tos Guerreiro. – 2025.

90 f: il. color. ; 30 cm

Tese (doutorado) - Pontifícia Universidade Católica do Rio
de Janeiro, Departamento de Física, 2025.

Inclui bibliografia

1. Física – Teses. 2. Optomecânica. 3. Pinça óptica. 4.
Sistemas quânticos mesoscópicos. I. Guerreiro, Thiago. II.
Pontifícia Universidade Católica do Rio de Janeiro. Departa-
mento de Física. III. Título.

CDD: 004



To my parents, for their support
and encouragement.



Acknowledgments

To my adviser Professor Thiago Guerreiro for the stimulus and partnership to
carry out this work.

To Hendrik Ulbricht for hosting me in his research group under LeviNet
Scientific Missions scheme.

I would like to express my deep gratitude to my friends and colleagues for their
unwavering support, encouragement, and camaraderie throughout this journey.
Your insights, feedback, and shared moments of laughter have been invaluable
in making this process not only achievable but also meaningful. Thank you for
being an integral part of this chapter in my life.

To CNPq and PUC-Rio, for the aids granted, without which this work could
not have been accomplished.

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.



Abstract

Reis, Rafael Muffato; Guerreiro, Thiago (Advisor). Towards quantum
control of levitated mesoscopic particles. Rio de Janeiro, 2025. 90p.
Tese de Doutorado – Departamento de Física, Pontifícia Universidade
Católica do Rio de Janeiro.

Levitated optomechanics experiments are steadily approaching the quan-
tum regime. In this thesis, we explore the extrinsic coupling of levitated
nanoparticles in optical tweezers in vacuum, with nonlinearities induced by
optical and electrical control. Furthermore, we present a technique for the
preparation of non-Gaussian states of the center-of-mass motion of these par-
ticles, leveraging both parametric modulation and the intrinsic nonlinearity
of the optical potential. Additionally, a quantum model for optical detection
with structured light fields is developed, enabling the analysis of a proposed
experiment designed to minimize and control perturbations due to position
measurement. These advances pave the way for refined control and manipula-
tion of quantum states in levitated systems in the near future.

Keywords
Optomechanics; Optical tweezer; Mesoscopic quantum systems.



Resumo

Reis, Rafael Muffato; Guerreiro, Thiago. Rumo ao controle quântico
de partículas mesoscópicas levitadas. Rio de Janeiro, 2025. 90p.
Tese de Doutorado – Departamento de Física, Pontifícia Universidade
Católica do Rio de Janeiro.

Experimentos de optomecânica levitada se aproximam cada vez mais do
regime quântico. Nesta tese, exploramos o acoplamento extrínseco de nanopar-
tículas levitadas em pinças ópticas em vácuo com não-linearidades induzidas
por controle óptico e elétrico. Além disso, apresentamos uma técnica para pre-
paração de estados não-Gaussianos do movimento do centro de massa de tais
partículas, utilizando tanto modulação paramétrica quanto a não-linearidade
intrínseca do potencial óptico. Adicionalmente, um modelo quântico para de-
tecção óptica com campos de luz estruturados é desenvolvido, permitindo a
análise de uma proposta de experimento projetada para minimizar e controlar
perturbações devido à medida de posição. Tais avanços abrem caminho para
o controle refinado e manipulação de estados quânticos em sistemas levitados
no futuro próximo.

Palavras-chave
Optomecânica; Pinça óptica; Sistemas quânticos mesoscópicos.
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What we observe is not nature itself, but
nature exposed to our method of questioning.

Werner Heisenberg, Physics and Philosophy: The Revolution in Modern
Science.



1
Introduction

1.1
Levitodynamics

Light interacts with matter. In 1619, Kepler proposed that light could
affect a comet’s tails explaining why it consistently point away from the
Sun [1]. This concept was eventually formalized with Maxwell’s theory of
electromagnetism, where the transfer of momentum by light was quantified [2].
Preliminary experiments regarding this phenomenon were first verified at the
turn of the 20th century [3, 4], around the same time when Einstein discussed
the momentum transfer of light [5].

In the sixties Braginsky analysed theoretically and showed experimen-
tally that microwaves can affect the mechanical energy of an oscillating mirror
[6, 7]. His work is foundational for modern concepts in quantum measurement,
as well as developing technologies like gravitational wave detectors where such
effects play a critical role. However, these optical forces are so small that only
after the invention of the LASER that Arthur Ashkin was able truly control
the movement of small particles. He observed that a laser beam can push these
particles in the direction of its propagation due to the radiation pressure ex-
erted by the light. This force is known as the scattering force, Fscatt. More
intriguingly, he also observed that particles with refractive indices higher than
that of the surrounding medium were drawn toward the center of the laser’s
focal point. The force responsible for this attraction is known as the gradient
force, Fgrad. The gradient force enabled the development of single-beam opti-
cal tweezers, allowing for the precise manipulation of microscopic particles [8].
The discussion on quantum aspects of noise in interferometers were further
developed by [9] setting up the field of quantum optomechanics in the 1990s
[10, 11].

In typical optical levitation experiments, a dielectric nanoparticle is
trapped using a tightly focused Gaussian beam, which generates a confining po-
tential that is approximately harmonic [12, 13, 14]. By controlling the trapping
laser power it becomes possible to precisely control the conservative dynamics
and change the oscillator’s natural frequency, Ω0, within an approximate range
of 50 ∼ 500 kHz. Moreover, the ability to levitate particles without mechani-
cal clamping in ultra-high vacuum conditions allows for exceptional decoupling
from the environment with extremely low damping Γ0. As a result, the energy
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lost in an oscillator per oscillation relative to the stored mechanical energy
is very small with quality factor, Q = Ω0/Γ0, reaching remarkable values of
up to 1010 [15]. Optically levitated nanoparticles [16] offer a promising exper-
imental platform for studying non-equilibrium physics, detecting small forces,
advancing material science, and testing the principles of quantum mechanics.

1.2
Matterwave interferometry

Quantum mechanics describes the behavior of particles at very small
scales, such as atoms and subatomic particles, where the rules of classical
physics no longer apply. One of the core concepts in quantum mechanics is
superposition.

In classical physics, objects exist in well-defined states—like a car being
in one location or a switch being either "on" or "off." However, in the quantum
realm, particles can exist in a superposition of multiple states simultaneously.
For example, an electron can be in two places at once or occupy multiple energy
levels at the same time. The particle remains in this superposed state until it
is measured or observed, at which point the superposition collapses, and the
particle takes on a single, definite state.

Superposition is fundamental to many emerging quantum technologies.
In quantum computing, it enables faster processing of complex problems in
cryptography, drug discovery, and materials science. Quantum sensing lever-
ages superposition for unprecedented precision in measuring time, magnetic
fields, and gravitational forces, enhancing technologies like GPS and medical
imaging. In quantum communication, superposition allows for highly secure
data transmission, with quantum cryptography ensuring eavesdropping is de-
tectable. Finally, quantum simulations utilize superposition to model complex
systems, leading to breakthroughs in understanding new materials and particle
behavior.

The extension of quantum phenomena, typically seen at microscopic
scales, to manifest in larger systems is refereed as macroscopic quantum states.
These states are not readily observed and become increasingly difficult to
produce as the mass and size of the system increases [17]. There is significant
interest in researching these states, as they are crucial for advancing quantum
technologies, particularly highly sensitive quantum sensors, and for addressing
fundamental questions in physics. They play a key role in testing the limits of
quantum mechanics and exploring the influence of gravity on quantum systems
[18].

The concept of superposition, first demonstrated in Young’s double-
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Figure 1.1: five steps for interferometry

slit experiment with light [19], was later extended to particles through the
discovery of electron wave-particle duality [20]. Experiments on matter-wave
interferometry has since shown that larger particles, such as fullerenes with
masses around 60 atomic mass units (amu), can also exist in superposition
states [21]. As experimental techniques have advanced, the mass of particles
exhibiting quantum interference has steadily increased, reaching over 10,000
amu [22] and beyond 25 kDa [23]. This bottom-up progression raises the
intriguing question of how massive a superposition state can be prepared.

Experiments with the centre of mass (COM) motion of levitated nanopar-
ticles offers an outstanding level of decoupling from the environment, as such
they are considered as a promising platform for testing quantum mechanics at
larger scales. A milestone in reaching the quantum regime of levitated nanopar-
ticle’s COM motion has been achieved through ground-state cooling by several
groups [24, 25, 26, 27, 28]. Transforming these cooled states into superposition
is yet to be achieved. Recent research with levitated optomechanical setups is
aiming to do that [29, 30, 31] with efforts on improving experimental setups
[32, 33]. These ongoing efforts aims to extend matter-wave interferometry in a
top down approach to nanoparticles with masses up to 109 amu. In this thesis
I will also discuss an approach to do that.

1.3
Procedure for interferometry

A quantum interference experiment is a reliable method for demonstrat-
ing the preparation of quantum superposition states. There are five key pro-
cesses are essential and worth mentioning for such an experiment.

1. The first step is the previously mentioned ground-state cooling. These
cooled states act as the initial coherent source upon which the quantum
superposition will be generated.

2. Secondly, coherent wave-function expansion must happen to delocalize
the particle’s state [33, 34] over distances larger than its radius. This is
necessary because, although the ground state has an uncertainty on the
order of picometers, the physical size of the nanosphere is on the order of
nanometers. This significant difference causes the particle nature of the
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nanosphere to manifest itself. When the wave function extends beyond
the object’s physical size, wave-like properties increasingly dominate its
behavior, making quantum superpositions possible to occur.

3. After expansion, a nonlinear operation is needed to induce quantum
superposition to the state. This nonlinear operation is represented by the
slits in the double-slit experiment. This is a crucial step that transforms
the state inducing phenomena that can not be described by classical
physics alone. Although cooled and latter expanded states, may hint at
quantum behavior through squeezing, for example, they are still Gaussian
states and considered insufficient by some to provide conclusive evidence
of quantum behavior [35]. Thus, a nonlinear operation is required to
generate interference patterns and unequivocally confirm the quantum
nature of the system in a qualitatively new way beyond the scope of
classical physics.

A few sources of non linearity have been discussed. Some of them use
laser light in a standing wave configuration [36]. Some other suggest
using electrical trapping [37]. The work discussed in this thesis uses the
intrinsic non linear tails of optical potential generated by a single focused
Gaussian laser beam.

4. The definitive hallmark of quantum behavior is the observation of inter-
ference fringes, which unambiguously demonstrate quantum superposi-
tion. The experimental procedure requires a way to verify these inter-
ference fringes or reconstruct the quantum Wigner function, including
its negativity. Optomechanical state tomography has been successfully
demonstrated in the classical regime for clamped [38] and levitated [39]
systems, with several proposals extending the technique to the quantum
regime [40, 41, 42], including approaches utilizing neural networks [43].
However, a specific quantum procedure for levitated optomechanics has
yet to be fully developed and requires further research.

5. Repeatability of the whole procedure is also important to gather the
necessary ensemble statistics and resolve the signature features. The
same conditions over repetitions must be ensured to measure the result.
This forces one design a protocol to reuse the same particle in each run.
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1.4
Thesis overview

In this thesis, we explore experiments with optically levitated nanopar-
ticles aimed at pushing these systems into the quantum regime.

We first examine how external nonlinearities can be introduced into the
nanoparticle’s motion through feedback control mechanisms. Utilizing real-
time position readout, these feedback systems dynamically actuate on the
particle, facilitating the controlled introduction of nonlinear interactions.

Next, we investigate the expansion of the nanoparticle’s mechanical state
via parametric modulation. We analyze how the intrinsic nonlinearity of the
trapping potential acts to split the state, thereby generating distinct non-
Gaussian features, offering a pathway to exploring quantum state preparation.

Finally, we theoretically address the use of structured light for COM posi-
tion readout. We demonstrate that specific configurations of the light field can
be tailored to avoid providing position information, thereby suppressing de-
coherence and enabling minimally invasive measurements. This opens avenues
for the controlled manipulation of the nanoparticle’s quantum state.



2
Optical Trapping

Since this thesis focuses on optical levitation experiments, it is natural
to begin with a discussion of the fundamental optical forces that govern the
dynamics of levitated particles, along with other key aspects relevant to the
behavior of mesoscopic systems. This foundational overview will provide the
necessary context for understanding the interaction between light and matter
in the regimes explored in the experiments of our work.

2.1
Optical forces

The interaction of light with matter, particularly a spherical object, can
be classified into three regimes based on the ratio of the incident wavelength
λ to the sphere’s radius r and volume V = 4

3πr
3. If the wavelength is much

smaller than the particle radius (λ ≪ r) a geometric treatment of optics is
possible. If the wavelength is comparable to the particle radius (λ ≈ r) the
scattering can be quite complex due to resonances, but the Mie scattering
theory that takes into account the vectorial nature of Maxwell equations is
a feasible approach. For wavelengths much bigger than the particle radius
(λ ≫ r) the Rayleigh scattering description applies.

It is desirable to work in the dipole regime because the dipole interac-
tion primarily couples to the gradient of the electromagnetic field rather than
directly to the photon flux, allowing for highly stable three-dimensional trap-
ping. In addition, smaller particles tend to have higher trap frequencies, this
means their ground-state energy, Eground = ℏΩ0/2, tends to be higher. Higher
mechanical frequencies reduce thermal occupation because each phonon car-
ries more energy. At a given thermal energy kBT , fewer phonons are excited,
making it easier to reach the quantum regime with suitable cooling techniques.
In the following section, we will explore this regime in detail and examine how
the restoring force enables optical trapping.

The nanoparticle is modeled as a linear dielectric with refractive index np,
and permittivity ϵp = n2

p, embedded in a medium with refractive index nm and
permittivity ϵm = n2

m. The relative index of refraction nr = np/nm. When the
electromagnetic field interacts with the particle, it induces a local separation
of charges, resulting in an electric dipole moment, P = αE, within the bulk of
the particle. The particle’s response to the electric field is characterized by its
polarizability, α, which we formulate by the Clausius-Mossotti relation,
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α = 3ϵmV
n2
r − 1
n2
r + 2 , (2-1)

calculated considering the spherical geometry of the particle. Under these
conditions, the particle can be treated as a point-like object, devoid of internal
structure, with an effective dipole moment governed by its polarizability. This
parameter serves as the key coupling factor between the particle’s center-of-
mass motion and the electromagnetic field.

From the Lorentz force one can find an expression for the electromagnetic
force acting on a point dipole,

F = α
(1

2∇|E|2 + d

dt
(E × B)

)
. (2-2)

2.2
Gradient and Scattering force

Using the Clausius-Mossotti relation (Eq. 2-1) and the relation between
the time averaged electric field and intensity I = cnϵ0|E|2/2. The first term in
(Eq. 2-2) takes the form of a gradient seeking force kown as gradient force,

Fgrad = 1
2α∇|E|2 = 4πnr3

c

n2
r − 1
n2
r + 2∇I. (2-3)

The second term in Eq. 2-2 is the scattering force,

Fscat = α
d

dt
(E × B) = 128π5r6

3cλ4
0

(n2
r − 1
n2
r + 2

)2
n5Iẑ. (2-4)

On one hand, the gradient force is of significant interest, as it directs
the particle towards regions of high light intensity, as shown in Fig. 2.1.
In a tightly focused beam, the gradient force generates a three-dimensional
restoring force, enabling highly stable trapping with depths well above the
noise instabilities caused by the ambient temperature of atmospheric air during
the initial particle loading phase.

On the other hand, the scattering force (Eq. 2-4) is non-conservative
and leads trap instability making it generally undesirable for optical trapping.
Fortunately it’s relative importance to the gradient force scales with the third
power of the particle radius and is underwhelmed by for small particles as is
the case we will be dealing with in this work [44].

2.3
Trapping light field

The gradient force generated by weakly focused beams, only provide
transversal trapping [45]. Highly focused laser beams, in contrast, provide
the intensity profiles needed for optical trapping in three dimensions [46]. A
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Figure 2.1: Charge separation of a polarizable sphere under influence of a
homogeneous electric field. If an electric field gradient is present a net force
appears.

convenient approximated way to describe such beams, which captures the basic
key physical aspects of the problem, arises from the paraxial approximation of
the Helmholtz equation, whose fundamental solution is the Gaussian beam. In
cylindrical coordinates the Gaussian beam intensity is given by,

I(r, z) = I0
( w0

w(z)
)2

exp
{

(− 2r2

w(z)2 )
}
. (2-5)

Where the waist at the focus is, ω0 = λm/πNA. The laser wavelength in the
medium is, λm = λ0/nm. The numerical aperture (NA) of the beam relates to
the angle of divergence, NA = nm sin(θ0) = sin(w0/zr), which will be further
discussed below. The beam radius spreads according to,

ω(z) = ω0
[
1 + ( z

zr
)2
]1/2

. (2-6)

The Rayleigh range, defined as the distance over which the beam radius spreads
by a factor of

√
2 is given by, zr = πω2

0/λm.
The experimentally accessible laser power relates to the intensity at the focal
plane I0 = 2P/πw2

0.
A depiction of the Gaussian beam intensity, (Eq. 2-5), can be seen as a

transversal section in (Fig. 2.2 A) with the beam waist indicated as a solid
gray line. The axial section is shown in (Fig. 2.2 B) where the solid gray lines
indicates the beam radius (Eq. 2-6). This beam radius is a hyperbole curve
and it approaches an asymptotic limit, forming a divergence angle, θ0, with
the optical axis.

The Gaussian beam intensity creates the necessary profile to generate
a restoring force that confines the particle, with the resulting gradient force
forming a trapping potential,

U(r, z) = −4πnmR3

c
(m

2 − 1
m2 + 2)I(r, z). (2-7)
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Figure 2.2: Intensity profile of paraxial Gaussian beam Eq. (2-5). Panel A:
transversal section at z = 0 with solid red circle indicating beam waist w0,
which encloses the region containing the majority of the beam’s power. Panel
B: axial section with beam radius w(z) indicated by solid red hyperbole Eq.
(2-6).

Taylor expansion of the intensity (Eq. 2-5) is possible, and is a specially
reliable approximation for particles oscillating with low amplitudes. To do that
we can first expand the inverse beam radius squared,

1
ω(z)2 = 1

ω2
0

z2
r

z2
r + z2 = 1

ω2
0

(
1 − z2

z2
r

)
+ O(z4). (2-8)

Expanding also the exponential term,

exp
{

(− 2r2

w(z)2 )
}

= 1 − 2r2

w(z)2 + O(r4) = 1 − 2r2

w2
0

+ O(r4, z4, r2z2), (2-9)

Allow us to find the optical potential to second order in r and z.

U(r, z)
U0

= 1 − 2r2

ω2
0

− z2

z2
r

+ O(r4, z4, r2z2). (2-10)

Where we have defined the potential depth as,

U0 = −4πnmR3

c
(m

2 − 1
m2 + 2)I0. (2-11)

By comparing the approximated optical potential (Eq. 2-10) with the
elastic potential energy of a generic harmonic oscillator, Uhar(x) = kx2/2,
we can determine that the optomechanical spring constants for the levitated
particle are kr = 4U0r

2/ω2
0 for the transverse direction and kz = 2U0z

2/z2
r for

the and axial direction.
This indicates that levitated optomechanics is a system that operates

with an adjustable natural frequency of oscillation within a frequency range of
10 kHz to 500 kHz, achieved by selecting the appropriate trapping laser power.
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Figure 2.3: The trapping potential for a dipole particle in an optical field
formed by a Gaussian intensity profile creates a localized potential well, where
the particle experiences forces that confine it near the peak intensity region
Eq. (2-7).
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Figure 2.4: Panel A: Potential well along the transverse direction (z = 0), with
the dashed line representing the harmonic approximation. Panel B: Potential
well along the axial direction (r = 0), with the dashed line illustrating the
harmonic approximation.

2.4
Gas damping

The damping rate, Γm = Γ/m, which governs the attenuation of oscil-
lations, plays a crucial role in levitated nanoparticle dynamics. The primary
source of damping is collisions with gas molecules, which are linearly depen-
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dent on the pressure, P , up to pressures as low as 10−7 mbar, where photon
recoil heating becomes the dominant damping mechanism [47]. In the pressure
regime dominated by gas collisions, the damping rate can be expressed as [48]

Γm = 64r2

3mvgas
P, (2-12)

with vgas the mean thermal velocity of the gas molecules at room temperature.

2.5
Particle dymanics

Focusing on motion along a single spatial direction, x, y, or z, collectively
denoted as q, one can write down the equation of motion,

q̈(t) + Γmq̇(t) + ω2
0q = Fdrive(t)

m
. (2-13)

Let’s begin analysing the levitated particle dynamics by first studying
the one dimensional harmonic oscillator driven by a force, Fdrive(t), in the
frequency domain. To do that we need to consider the the Fourier transform
of position and driving force,

q̃(ω) =
∫ ∞

−∞
q(t)e−iωt dt, F̃drive(ω) =

∫ ∞

−∞
Fdrive(t)e−iωt dt. (2-14)

Any arbitrary periodic driving force can be expressed as a linear combi-
nation of sinusoidal functions. Therefore, studying a single sinusoidal input is
essential for understanding the dynamics of oscillatory systems, as it captures
the system’s response to more complex forces.
The Fourier transform of the harmonic oscillator equation of motion,

−ω2q̃(ω) − iωΓmq̃(ω) + ω2
0 q̃ = F̃drive(ω), (2-15)

allows it’s mechanical susceptibility,

H(ω) = 1/m
ω2

0 − ω2 + iγω
, (2-16)

to be defined. This concept helps to understand how the oscillator reacts to
an external driving depending on it’s frequency, q̃(ω) = H(ω)F̃drive(ω). The
mechanical susceptibility plot for amplitude and phase can be seen in (Fig.
2.5).

2.6
Fluctuating force

In high vacuum conditions the dominant driving mechanism for optical
levitation arises from gas molecules collisions, which makes impossible for the



Chapter 2. Optical Trapping 29

0 f0

f (Hz)

100

101

|H
(f

)|
(s

2
/k
g
) A

0 f0

f (Hz)

0

−π
2

−π

6
H

(f
)

(r
a
d
) B

Figure 2.5: Transfer function of the harmonic oscillator for three different values
of quality factor, Q = ω0/Γm, as Q = 1, 10 and 100 as doted, dashed and solid
lines respectively.(2-16). Panel A: Absolute value of H(f) shows a an enhanced
response for driving frequencies near the natural frequency of the oscillator.
Panel B: relative phase of oscillator in relation to driving force. In the DC
limit, f → 0, the oscillator behaves as a dynamometer. for resonant drives,
f = f0, the oscillator lags behind by 90◦. High quality factors produce sharper
transitions on phase response.

particle’s movement to remain completely still. Rather the particle will always
be subjected to noisy Brownian motion due to interaction with its surrounding
medium, constantly driving the system. The immense number of collisions,
makes a detailed description of each interaction computationally impractical.
Therefore, it is more effective to focus on large-scale behavior by reducing the
resolution at the microscopic level. In this context, we model the driving as
a time-dependent fluctuating force. By doing so, (Eq.2-13) transforms into a
type of stochastic differential equation, known as the Langevin equation (Eq.2-
17), which captures the interplay between deterministic forces and random
fluctuations and is well-suited for describing the classical dynamics of an
optically levitated nanoparticle.

m¨⃗r(t) = −mΓm ˙⃗r(t) + F⃗ (r⃗(t)) + Ffluct(t), (2-17)

2.7
Power spectral density

In general terms, the PSD of a signal X(t) is defined as

SXX(ω) = lim
T→∞

E
[ 1
2T |XT (ω)|2

]
. (2-18)

where the finite-time Fourier transform of the process is given by

XT (ω) =
∫ T

−T
X(t)e−iωtdt. (2-19)

Substituting this into Eq. (2-18), we obtain
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SXX(ω) = lim
T→∞

1
2T E

[∫ T

−T

∫ T

−T
X(t)X∗(t′)e−iω(t−t′)dtdt′

]
. (2-20)

The PSD can thus be identified as the Fourier transform of the function

RX(t, t′) = E [X(t)X∗(t′)] , (2-21)
known as the autocorrelation function.

For wide-sense stationary (WSS) processes, the autocorrelation function
depends only on the time difference τ = t − t′, rather than on the absolute
time, leading to

SX(ω) = lim
T→∞

1
2T

∫ T

−T

∫ T

−T
RX(τ)e−iωτdtdt′. (2-22)

Since RX(τ) depends only on τ , we introduce the midpoint variable
u = (t + t′)/2. The Jacobian of this transformation gives dtdt′ = dudτ ,
with integration limits u ∈ [−T, T ] and τ ∈ [−2T, 2T ] . Integrating over u
contributes a factor of 2T , canceling the prefactor 1/(2T ) , leaving

SX(ω) =
∫ ∞

−∞
RX(τ)e−iωτdτ. (2-23)

This result is known as the Wiener-Khinchin theorem.
The coupling of the levitated particle to the thermal bath implies that it

exhibits a thermal state of motion, necessitating a statistical description. The
position variance serves as an effective parameter to characterize the thermal
energetics of the system, and the power spectral density (PSD) provides a
suitable framework for its analysis. To understand the PSD of the dynamical
variable q , introduced in Eq.(2-13), one can invoke the concept of the transfer
function (Eq.(2-16)) and recognize that the thermal energy of the bath excites
all available degrees of freedom of the system, leading to

Sqq(ω) = |H(ω)|2⟨|F̃fluct(ω)|2⟩ = 1
m2

⟨|F̃fluct(ω)|2⟩
(ω2

0 − ω2)2 + Γ2
mω

2 , (2-24)

which describes the distribution of variance density across infinitesimal fre-
quency bands.

Since the fluctuating force is modeled as white noise, it contributes an
equal amount of fluctuation power at each frequency. By the residue theorem
the PSD (Eq. 2-24) can be integrated over all frequencies,

⟨|F̃fluct(ω)|2⟩
m2

∫ ∞

−∞

dω

(ω2
0 − ω2)2 + Γ2

mω
2 =

⟨|F̃fluct(ω)|2⟩
m2

π

Γmω2
0
. (2-25)
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Figure 2.6: Calibration PSD of experimental data and fitted theoretical curve.
ω0/2π = 77.59 kHz Levitated particle at 5 mbar results in Γm/2π = 4.12 kHz.
The right y-axis expresses the PSD in meters. Such conversion is possible by
using the equipartition theorem and the conversion factor is γm/V = 831.5
nm/V.

Using that ω2
0 = k/m, and that

∫∞
−∞ Sthqq(ω) dω = ⟨x2(t)⟩, the equiparti-

tion theorem implies that the thermal force white noise spectrum has a strength
that depends on the damping rate,

⟨|F̃fluct(ω)|2⟩ = mkBTγ

π
. (2-26)

This result is known as the fluctuation-dissipation theorem [49] and can be
seem graphically in (Fig. 2.7). Here, kB is the Boltzmann’s constant and T the
temperature of the gas surrounding the oscillating particle [49], while η(t) is a
zero-mean, delta-correlated Gaussian white noise such that

E[η(t)η(t′)] = δ(t− t′). (2-27)
By considering only the experimentally relevant positive frequencies,

ω > 0, we obtain the one-sided PSD.

Sqq(ω) = kBT

mπ

Γm
(ω2

0 − ω2)2 + Γ2
mω

2 . (2-28)

Allowing for the characterization of the trap’s parameters as illustrated
(Fig. 2.6) [50, 13]. The (Eq. 2-28) has units of meters; however, experimentally
acquired data are read with a photo-detector and recorded with an oscilloscope
as Volts. A calibration parameter, γm/V , is introduced to convert measured
voltages into physically meaningful displacements in meters.

2.8
Euler-Maruyama numerical solver for Langevin dynamics

The Langevin equation can be integrated numerically. The time depen-
dence on the noise is non trivial. Since the thermal force is modeled as white
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Figure 2.7: Fluctuation-dissipation The fluctuation-dissipation term links
the strength of fluctuation force with the damping rate. The random nature
of the collision does not only provide damping Γm, but also a stochastic
force Ffluc, which thermalizes the energy of the nanoparticle. The fluctuation-
dissipation theorem links the damping rate intimately to the strength of the
stochastic force, Ffluyc(t) =

√
2mΓmKBT0ξ(t) Panel A: Particle trajectory

in 2D with high damping ratio. Panel B: Particle trajectory in 2D with low
damping ratio.

noise its correlation is a delta function,

E[ηi(t)ηj(t′)] = δijδ(t− t′). (2-29)

Thus, for correct dimensions the random force increment in a time step, ∆t,
has to scale as

√
∆t. The Wiener increments of noise, ∆Wn = Wτn+1 −Wτn =

N (0,
√

∆t) is a normally distributed random variable with variance ∆t that is
used for discretized numerical integration scheme.

q̇n+1 = q̇n + Γmq̇n∆t+ ω2
0qn∆t+

√
2ΓkBTeff/m2∆Wn, (2-30)

qn+1 = qn + q̇n∆t (2-31)

This concludes the concise overview of the toolbox required to understand
the experimental discussions presented in the following sections.



3
Perturbative nonlinear feedback forces for optical levitation
experiments

In this chapter, we explore the influence of an external, non-linear force
of electrical origin on the motion of a levitated particle. This force is applied
through time-dependent, spatially uniform electric fields acting on a charged
particle. A feedback loop processes the particle’s position signal, generating an
effective tunable position-dependent nonlinear force.

The theoretical predictions concerning the impact of perturbative non-
linear forces on the spectrum of tweezed nanoparticles, as outlined in [51], are
experimentally validated here, with a particular focus on the underdamped
regime. Specifically, we confirm spectral corrections induced by tunable Duff-
ing nonlinearity perturbations. By adjusting the strength of the Duffing non-
linearity, as seen in (Fig. 3.1), we examine its influence on the power spectral
density (PSD). Both spectral broadening and a shift in the center frequency
are expected, but we focus primarily on the frequency shift, as it represents
the dominant first-order effect. Our experimental results show quantitative
agreement with the theoretical predictions in [51], and the findings are further
detailed in [52].

0

r (m)

0

U
(J

)

potential

Figure 3.1: A harmonic potential distorted by the inclusion of a Duffing
nonlinearity exhibits significant changes in its shape. As the strength of the
nonlinearity increases, the potential broadens, deviating from the parabolic
profile characteristic of purely harmonic systems. This widening reflects the
influence of the quartic term in the Duffing potential, which introduces
anharmonic effects that behaves as an effective softening of the harmonic
potential.

In the presence of nonlinear potential landscapes, referred to here as
nonlinear optical tweezers, the quantitative statistical description of stochastic
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particle motion becomes significantly more complex due to the involvement of
nonlinear stochastic differential equations. While in harmonic approximations
of optical tweezers the mechanical susceptibility of the oscillator can be derived
using the Fourier transform of the Langevin equation of motion (Eq. 2-24), this
approach fails in nonlinear potential landscapes where the Fourier transform
is no longer applicable. To make quantitative predictions about the statistical
correlators of the trapped particle’s motion in such cases, we can instead
rely on perturbation theory [53]. This method, developed using stochastic
path integrals [51], enables the computation of corrections to the statistical
moments of particle motion as Gaussian integrals, including the position power
spectrum, which is widely used in experimental physics. The purpose of this
work is to experimentally validate these theoretical methods.

A systematic investigation of nonlinearity effects using Gaussian beam
tweezers in the dipole regime is challenging, as both the linear and nonlinear
spring constants scale proportionally with trapping power, making indepen-
dent variation difficult [54]. Although adjusting the numerical aperture (NA)
of the focusing element could, in principle, modulate the relative contributions
of the linear and nonlinear components, practical control over the NA is con-
strained. To address this, we introduce effective feedback-controlled potential
landscapes, allowing us to impose nonlinear, position-dependent forces on a
levitated nanosphere. This nonlinearity is realized via electric feedback, and
we characterize its influence on the particle’s dynamics.

This discussion is organized as follows. In the next section, we briefly
review the perturbation theory for computing corrections to the correlation
functions of a trapped particle under the influence of a nonlinear force, and
generalize it to include the effect of delayed forces. Since we deal with artificial
electric feedback potentials relying on measurements and processing of the
trapped particle’s position, they imply an inherent delay to the nonlinear
force and therefore accounting for the effects of this delay is essential to
validating the methods of [51]. We then describe the experimental setup used
to generate nonlinear potential landscapes through electric feedback on the
particle and numerically compute the effects of delay, showing that within
the range of parameters employed in our experiment they are negligible. We
implement a cubic force (quartic potential) on the particle and finally verify
the perturbation theory by comparing the predicted center frequency of the
position power spectral density with experimental results. We conclude with
a brief discussion on the applications of artificial nonlinear forces to levitated
optomechanics experiments.
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3.1
Theory

This section provides a concise overview of the theoretical framework
underpinning this experiment, as presented in Ref. [51].

3.1.1
Formulation of the perturbation theory

We model the stochastic motion of a particle in a fluid at thermal
equilibrium at temperature Teff and under a force field F⃗ (r⃗) using the Langevin
equation,

¨⃗r(t) = −Γm ˙⃗r(t) + F⃗ (r⃗(t))/m+
√
Cη⃗(t), (3-1)

where m is the particle’s mass, Γm = Γ/m, C = 2ΓkBTeff/m
2 with Γ the drag

coefficient and η⃗(t) is isotropic Gaussian white noise, whose components satisfy

E[ηi(t)ηj(t′)] = δijδ(t− t′). (3-2)
Concentrating in the motion along the longitudinal z-direction, Eq. (3-1)
reduces to a one dimensional Langevin equation

z̈(t) = −Γmż(t) + Fz(z(t))/m+
√
Cη(t). (3-3)

For an approximately linear trapping force perturbed by nonlinear corrections,
the steady state position auto-correlation A(t) ≡ E[z(t)z(0)] can be perturba-
tively approximated. We next summarize the perturbation theory outlined in
[51] and used throughout this work.

Consider the symmetric force acting on the particle,

Fz(z) = −mω2
0z −Gfbz

3, (3-4)

where the first term accounts for a harmonic optical trap with resonance
frequency ω0 and the second term is a small nonlinear correction, which in
the experiment originates from a feedback force on the particle proportional
to the feedback gain Gfb times a nonlinear function of the particle’s position.
We define the Green function, which comes from the homogeneous equation of
the harmonic oscillator,

G(t) = sin(Ω t)
Ω exp

(
−Γmt

2

)
H(t), (3-5)

where Ω =
√
ω2

0 − Γ2
m/4 and H(t) is the Heaviside step function with

H(t) = 1 for t > 0 and H(t) = 0 for t ≤ 0. We introduce the auxiliary variable
(also referred to as the response paths) z̃(s) and define the Wick sum bracket,
⟨(· · · )⟩0, that describes the correlation structure of the stochastic process in
terms of pairwise contractions dictated by a Green’s function:
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⟨z(t1) · · · z(tn)z̃(s1) · · · z̃(sm)⟩0 = δnm
∑
σ

n∏
j=1

G(tj − sσ(j)) (3-6)

where the sum goes over all permutations σ of indexes {1, . . . , n}. The
response variables z̃(s) can be understood as auxiliary integration variables
in a stochastic path integral defining the perturbation theory expansion; we
refer to [53, 51] for details on stochastic perturbation methods. Note that the
second order correlator is given by the Green function, ⟨z(t)z̃(s)⟩0 = G(t− s).
The perturbation theory is summarized by the expression for the position
auto-correlation function,

A(t) ≡ E[z(t)z(0)] = ⟨z(t)z(0)eC
2

∫
z̃2(s)dse

Gfb
m

∫
z̃3(t′)z(t′)dt′⟩0, (3-7)

where the right-hand side is defined by expanding both exponentials inside the
brackets as a power series in C and in Gfb/m and interchanging summations
and integrations by applying the Wick bracket ⟨(· · · )⟩0. Note that only brackets
with an equal number of z and z̃ variables are non-vanishing [53, 51].

The first non-vanishing term in the expansion of Eq. (3-7) is

C

2

∫
⟨z(t)z(0)z̃2(s)⟩0 ds = C

∫
G(t− s)G(−s)ds , (3-8)

which gives the auto-correlation for the case of a linear force Fz(x) = −mω2
0z,

A(t)(Gfb=0) = Ce−Γm|t|/2(2Ω cos Ω|t| + Γm sin Ω|t|)
ΓmΩ(Γ2

m + 4Ω2) . (3-9)

The leading order correction in the feedback gain reads,

∆A(t) ≡ C2Gfb

8m

∫
⟨z̃2(s1)z̃2(s2)z̃(t1)z3(t1)z(t)z(0)⟩0 ds1ds2dt1. (3-10)

Expanding the brackets using (3-6) would produce a sum with 5! = 120
terms, but many of these vanish since ⟨z̃(t1)z(t1)⟩ = G(0) = 0. Moreover, by
symmetry of the integration variables s1 and s2, the contribution to the integral
of the non-vanishing terms is equal to the contribution ofG(t−t1)G(−s1)G(t1−
s1)G2(t1 − s2) or G(−t1)G(t− s1)G(t1 − s1)G2(t1 − s2). Therefore, the integral
in (3-10) is computed by integrating these two terms over t1, s1, s2 and
multiplying both integrals by a multiplicity factor 23(3!) = 48. We note that a
diagrammatic expansion can be employed to organize non-vanishing terms in
the Wick sum; for more details we refer to [51].

From the auto-correlation function perturbation ∆A (Eq. 3-10) we can
obtain the corrected power spectral density (PSD) of the particle motion by
taking the Fourier transform. We obtain the PSD correction [51],

∆S = 3GfbC
2

Γmω2
0

ω2 − ω2
0

[Γ2
mω

2 + (ω2 − ω2
0)2]2 (3-11)
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Note the total PSD, S(Gfb=0) +∆S, can be approximated to linear order in Gfb

as the PSD of a linear system with a frequency shift ∆Ω,

C

Γ2
mω

2 + [ω2 − (ω0 + ∆Ω)2]2 ≈ C

Γ2
mω

2 + (ω2 − ω2
0)2

+ 4Cω0∆Ω ω2 − ω2
0

[Γ2
mω

2 + (ω2 − ω2
0)2]2 , (3-12)

Comparing the first order correction in Eq. (3-12) with the correction in
Eq. (3-11), we conclude that the nonlinearity causes a frequency shift given
by: ∆Ω

2π = 3kbTeff

4πm2ω3
0
Gfb ≡ κGfb. (3-13)

We see that effectively, the nonlinear perturbation manifests as a shift
in the PSD central frequency scaling linearly with the feedback gain Gfb and
with a slope given by the constant κ. This is valid for small Gfb,

Gfb ≪ m2ω4
0

2kbTeff
. (3-14)

The right-hand side of (3-14) can be used to delimit the validity region
of perturbation theory. The shift ∆Ω in the central frequency of the PSD
is the experimental signature which we use as an indicator of the effect
of nonlinear perturbations. It is worth noticing that the shift described by
(3-13) also includes intrinsic nonlinearities of the tweezer, which arise due to
anharmonicities of the trapping potential [48]. Note, however, that only relative
shifts to the original resonance frequency (with the cubic feedback off but in
presence of the intrinsic nonlinearities) are measured. Thus, our experiment
is not sensitive to the intrinsic anharmonicities of the trap, but only to those
effected by the cubic feedback.

3.1.2
Delayed nonlinearities

In addition to nonlinear force perturbations, we will also investigate de-
layed forces. Feedback forces generated artificially will inherently experience
electronic delays. It is known that delayed forces may lead to cooling or heating
in harmonic traps. Accounting for the effects of such delays in perturbation
theory allows us to understand the limits of validity of Eq. (3-7) for mod-
elling the artificial feedback forces. More broadly, understanding the role of
delays might also enable the study of perturbative nonlinear non-Markovian
stochastic dynamics [55].
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z(t)Gfbz
3(t − τ)

FPGA

x

z

Figure 3.2: Top view of experimental setup. A silica nanoparticle is
trapped by an optical tweezer in vacuum. The forward scattered light is
collected and sent to a photodiode, producing a signal proportional to the
particle’s axial coordinate, z(t). An FPGA processes the signal to produce a
voltage that induces a force on the trapped particle proportional to z3(t− τ).
Amplification prior to and after the FPGA enhance the maximum resolution
of its analog-to-digital converter, enabling the exploration of a broader range
of values for the applied electrical force. The x-direction pictured in the scheme
is parallel to the optical table.

We consider the generalized Langevin equation,

z̈(t) = −Γmż(t) − ω2
0z(t) − Gfb

m
z3(t− τ) +

√
C η(t), (3-15)

where τ > 0 is a fixed (constant) time delay.
The perturbation expansion for τ = 0 (Eq. (3-7)) can then be generalized

to

A(t, τ) ≡ E[z(t)z(0)] = ⟨z(t)z(0)eC
2

∫
z̃2(s)dse

Gfb
m

∫
z̃(t′)z3(t′−τ)dt′⟩0. (3-16)

Expanding the exponentials in power series and using the Wick sum as
defined in (3-6), the leading correction to the auto-correlation function (3-9)
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is given by the following integrals,

∆A(t, τ) ∝∫
G(t− t1)G(−s1)G(t1 − s1 − τ)G2(t1 − s2 − τ)dt1ds1ds2

+
∫
G(−t1)G(t− s1)G(t1 − s1 − τ)G2(t1 − s2 − τ)dt1ds1ds2 . (3-17)

We note both integrals are multiplied by the constant 3GfbC
2/m, which we

omit to avoid cluttering the notation. Evaluating the integrals leads to the
corrected auto-correlation function to first order in the perturbation,

A(t, τ) = Ce−Γm|t|/2(2Ω cos Ω|t| + Γm sin Ω|t|)
ΓmΩ(Γ2

m + 4Ω2)

+3C2Gfbe
−Γm|t|/2

64mΓ3
mΩ4ω6

0

eΓmτ/2[8ΓmΩ4 − 4ω2
0Γ2

mΩ2(|t| − τ)] cos(Ω(|t| − τ))

+eΓmτ/2[8ΓmΩ3ω2
0(|t| − τ) + 8Ω5 + 4Γ2

mω
2
0Ω + 6Γ2

mΩ3] sin(Ω(|t| − τ))

+e−Γmτ/2[Ω2(2Γ2
mΩ − 8Ω3) sin(Ω(|t| + τ)) + 8ΓmΩ4 cos(Ω(|t| + τ))]


+O(G2

fb, C
3),

The quantity A(0, τ) can be experimentally obtained from the area under
the PSD of the particle’s motion, which in turn can be related to the mean
occupation number of the mechanical modes. In what follows, we use these
expressions to account for the effects of delay in the artificially generated
nonlinear forces, and to show that perturbation theory in the absence of delay
provides a good approximation to current experiments.

3.2
Experiment

A simplified schematic of the experimental setup is shown in Figure 3.2.
A CW laser at 780 nm (Toptica DL-Pro) is amplified using a tapered amplifier
(Toptica BoosTa) producing up to 1.5 W at the output of a single mode fiber,
yielding a high quality Gaussian beam. The beam is expanded to overfill an
aspheric lens of numerical aperture NA = 0.77 (LightPath 355330) mounted
inside a vacuum chamber, which provides a tightly focused Gaussian beam to
form the optical trap. A solution of silica spheres of diameter 2R = 143 nm
(MicroParticles GmbH) is mono-dispersed in ethanol and delivered into the
optical trap using a nebulizer. Once a single particle is trapped, the pressure



Chapter 3. Perturbative nonlinear feedback forces for optical levitation
experiments 40

a) b)

Figure 3.3: Effect of a delayed nonlinearity. a) Longitudinal position PSDs
for the reference measurement (dark blue) in comparison to cubic feedback
forces at a gain of Gfb = 5.31 × 106 N/m3 and delays of τ = T/4 (bright blue)
and τ = 3T/4 (middle blue). Here, T represents the period of the particle
motion along the longitudinal direction. These comparisons reveal how the
introduction of a delayed cubic force can either cool or heat the particle motion.
b) Numerically simulated effective temperature Teff of particle motion as a
function of the delay in the cubic feedback force, displaying cooling and heating
in accordance to the predictions of nonlinear delayed perturbation theory
described in Sec. 3.1.2. With this analysis, we conclude that the electronic
delay present in our experiment, measured to be τ/T = 0.042 ± 0.006, can be
safely neglected.

in the chamber is reduced to 10 mbar. The trapped particle’s axial center-of-
mass (COM) motion, z(t), is recorded by collecting forward scattered light
with an aspheric lens of numerical aperture NA = 0.50, and directing it to a
photodiode (Thorlabs PDA100A2), generating an electric signal proportional
to z(t).

The signal from the detector is sent to a wide band-pass filter, amplified
and then input into an FPGA. The FPGA introduces a tunable delay, raises
the signal to the third power and multiplies it by a tunable gain. The output
signal is then amplified once again and applied to the mount of the trapping
lens, producing a voltage difference with respect to the mount of the collection
lens, which is grounded. This generates an electric force at the particle position
given by Gfbz

3(t− τ), where τ is the total delay introduced by the electronics
and Gfb is the overall feedback gain. For more details on the generated electric
field and electronics, see Appendices 3.4.1 and 3.4.2.

An artificial quartic potential is generated through a feedback scheme in
which a controlled electric voltage is applied to a pair of electrodes connected
to the mounts of the trapping and collecting lenses. As explained in Appendix
3.4.1, numerical simulations demonstrate that the electric field generated
between the lenses is approximately uniform in the vicinity of the particle’s
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position and directly proportional to the voltage on the electrodes. The electric
voltage applied is proportional to z(t − τ)3, where τ represents a total delay
term. The total delay term is the sum of an intrinsic delay of the setup
electronics and a tunable delay term that can be adjusted by an FPGA (Red
Pitaya STEMlab board).

In order to establish the feedback mechanism, the signal obtained from
the detector is sent to a wide band pass filter and pre-amplified. The FPGA
process the amplified signal, generating the non-linear behavior, and transmits
it to an amplifier connected to the electrodes. The overall feedback gain,
denoted as Gfb, is determined by the gains of the two amplifiers, along
with an adjustable gain defined within the FPGA. Appendix 3.4.2 gives
a comprehensive review of the electronic and software implementation. By
feedback of this non-linearity, the described setup enables the creation of
an effective and controllable Duffing anharmonicity on top of the existing
harmonic optical potential experienced by the levitated particle.

The electronics naturally introduce a delay to the applied position-
dependent electric forces, which could lead to deviations from the predictions of
the perturbation theory discussed in Sec. 3.1.1. To qualitatively understand the
effects of a delayed feedback nonlinear force, we have exaggerated the electronic
delay τ applying a cubic force of the form Gfbx

3(t−τ) for τ = (2π/4ω0) = T/4
and τ = 6π/4ω0 = 3T/4, and subsequently measured the PSDs of the particle
motion along the longitudinal direction. The results can be seen in Figure 3.3a),
in comparison to the PSD of the trapped particle in the absence of nonlinear
feedback. We see that depending on the delay, the particle undergoes cooling
(τ = T/4) or heating (τ = 3T/4). This can be understood as the nonlinear
analogue of cold damping, where the delayed feedback signal acquires a force
component proportional to the velocity [56, 57, 25].

We can quantify the effect of delay for the case of our experiment using
the theory described in Sec. 3.1.2. To do that, we have simulated the particle
dynamics under the influence of a delayed feedback cubic force for two different
values of the feedback gain Gfb within the regime of perturbation theory.
For each simulation, we extract the particle motion traces and compute the
position variance, from which the effective temperature Teff of the mechanical
oscillator can be obtained. The results are plotted in Figure as a function of
τ , in comparison to the theoretical prediction given by Eq. . The simulations
confirm the qualitative cooling/heating results shown in Figure 3.3 and are
in good agreement to the perturbation theory with the inclusion of delay.
Notably, for the electronic delay in our experiment, characterized to be
τ = (0.518±0.074)×10−6 s, we verify that the expected cooling/heating effects
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a) b)

Figure 3.4: Verifying the predictions of perturbation theory: a) PSDs of the
trapped particle’s longitudinal motion under cubic force, displaying central
frequency shifts. The data was taken at 293 K and a pressure of 10 mbar. The
reference PSD (middle blue) has a central frequency of 77.8 kHz and a shift of
±1.4 kHz was measured for Gfb = ±1.2 × 106 N/m3. b) Frequency shifts as a
function of Gfb, verifying the prediction of perturbation theory given by Eq.
(3-13) (dashed line). The grey shaded region marks the regime of validity for
perturbation theory described in Eq. (3-14). Each point corresponds to 250
seconds of data acquisition at 500 kHz divided into 1000 traces and organized
into batches of 5 traces each. All data points were collected using the same
nanoparticle.

due to a delayed nonlinear feedback provide a correction to the auto-correlation
at the level of 1.10% and are buried within experimental uncertainties. With
this analysis we conclude that any effect associated to electronic delay in our
experiment is negligible and the perturbation theory in the absence of delay
can be used to model the effect of nonlinear perturbations.

We next proceed to verify the perturbation theory as described in Sec.
3.1.1 (without delay, τ = 0). We apply an effective quartic perturbation to the
optical potential by acting on the trapped particle with a cubic force which was
generated, as previously described, from the position measurement feedback.
PSDs of particle motion under the influence of the cubic feedback force with
positive and negative feedback gains can be seen in Figure 3.4a). These
measurements qualitatively confirm the effect of the cubic force predicted
by perturbation theory as a shift in the PSD central frequency. Note the
shift depends on the sign of the feedback gain, in accordance to Eq. (3-13),
indicating an effective hardening or softening of the optical trap due to the
cubic actuation.

To quantitatively compare the frequency shifts with the predictions from
perturbation theory, we acquired the longitudinal motion PSD for different
values of feedback gain Gfb. Note that all parameters going into κ (see Eq.



Chapter 3. Perturbative nonlinear feedback forces for optical levitation
experiments 43

(3-13)) are obtained from additional setup characterizations, leaving no free
parameters for adjusting the theory to the data. For instance, the trap central
frequency ω0 and mechanical damping Γm are obtained from Lorentzian fits
of the unperturbed PSD, the nanoparticle mass m is calculated from the
diameter provided by the manufacturer and from the density of silica, and
the applied feedback gain Gfb is obtained after the calibration of the detector,
electrode and other intermediate electronic elements as described in more
detail in Appendix 3.4.2. The particle is taken to be at ambient temperature
Teff = 293 K; note that a 5 K variation in temperature yields a 2 % variation
in theoretical prediction.

Once these characterizations have been performed, the central frequencies
of the perturbed PSDs – and consequently the associated shifts – can be
obtained by a Lorentzian fit as a function of feedback gain and compared
to the theoretical predictions. The result of these measurements is shown in
Figure 3.4b), in comparison to the theoretical prediction given in Eq. (3-13)
for our experimental parameters.

Good agreement between the data and the theoretical prediction was
observed within the perturbation regime, indicated by the non-shaded region
of the plot. Note also that outside the regime of perturbation theory (grey
shaded regions in Figure 3.4b)), the measured shifts fall systematically slightly
bellow the predicted first order correction, consistent with the second-order
correction scaling of O(G2

fb) [51]. Note the error bars in Fig. 3b) are larger
for negative feedback in comparison to positive feedback gains. We attribute
this to the fact that the intrinsic nonlinearity of the optical trap introduces an
effective negative feedback gain (Goptical ≈ 106 N/m3), shifting the regime of
validity of perturbation to the right, towards positive gains [48]. Finally, the
experimentally obtained angular coefficient κe was measured to be

κe = (5.46 ± 0.10) × 10−4 Hz m3 N−1 (3-18)

which compares to the theoretical prediction given the parameters for our
experiment,

κt = 5.69 × 10−4 Hz m3 N−1 . (3-19)

3.3
Conclusions

In conclusion, we have implemented a cubic nonlinear force based on
position measurement feedback acting on an underdamped levitated nanopar-
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ticle. Effects of the cubic force on the particle’s stochastic dynamics have been
experimentally studied. In particular, shifts introduced in the particle motion
power spectrum due to the presence of the cubic feedback force have been
measured. We have verified that these shifts are in accordance to the predic-
tions of the stochastic path integral perturbation theory for nonlinear optical
tweezers introduced in [51]. To account for the experimental imperfections due
to electronic delay in the feedback, we have also extended the perturbation
theory and showed that for feedback schemes currently available in levitated
optomechanics experiments the effects of electronic delay can be made negli-
gible.

Nonlinear electric feedback potentials will useful in a number of applica-
tions in levitated optomechanics experiments, both in the classical stochastic
and quantum regimes. For instance, delayed nonlinear feedback can be used to
engineer a non-conservative system with nonlinear damping of the Van der Pol
type [58]. Finally, weak measurements of a levitated optomechanical system in
a cavity might allow for feedback-induced nonlinear dynamics in the quantum
regime [59] – the non-classical version of feedback-induced nonlinear forces.

Building on recent advances in levitated quantum control experiments
[26, 25], stronger nonlinear feedback forces could enable the preparation of non-
Gaussian states that surpass the intrinsic nonlinearities of optical potentials,
as illustrated in Fig. 3.5. While this experiment employed small nonlinearities
to remain within the perturbative regime, it is noteworthy that upgrading the
electronics to achieve higher amplification gains and kilovolt-range voltages
would produce significantly stronger nonlinearities. Such enhancements could
be instrumental in preparing non-Gaussian states in the quantum regime,
which is discussed in the next chapter of this thesis.

Code and data availability: GitHub. https://github.com/QuantumAdventures/non-
linearity-experiment

3.4
Additional technical discussion

The remainder of this chapter delves into specific technical details of the
experimental setup and procedures.

3.4.1
Electric field simulation

One of the experiment’s central assumptions is that the electric force
acting upon the trapped particle is proportional to the voltage applied to the
electrodes and does not depend on its position. Moreover, due to symmetry
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Figure 3.5: Plot illustrating the relationship between the electrode voltage and
the nonlinear feedback gain,Gfb . The curves demonstrate how our definition of
Gfb maps onto the broader Duffing parameter, which characterizes the system’s
nonlinearity. The plot also converts the Duffing parameter into linear position
dimensions, facilitating comparisons with characteristic length scales of the
motional state, such as the zero-point motion, zzpm =

√
ℏ/2mω0 . The blue

curve highlights the regime of small nonlinearity and low voltages within the
experimental range, where the system was operated in the perturbative regime.
For reference, the orange curve represents higher voltages, achievable with Paul
trap electronics in the kilovolt range, which would result into more pronounced
nonlinear effects.

around the optical axis, we expect the components of the electric force
orthogonal to the optical axis to be negligible. To verify these assumptions, a
simulation of the electric potential and electric field generated by the geometry
of the optical setup was conducted using COMSOL Multiphysics software
(version 5.4).

In Fig. 3.6, the electrical potential between the electrodes is shown for a
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Figure 3.6: Electric potential generated by the electrodes’ geometry for a slice
in the xz plane passing through the optical axis. The contour shows the internal
structure of the optical setup with the black dot marking the average position
of the trapped particle, about 1.59 mm away from the flat base of the trapping
lens.

a) b)

Figure 3.7: (a)-(b) The z and x, y components of the electric field in the vicinity
of the trapped particle. The dashed line denotes the average position of the
particle.

slice in the xz plane, where the internal contour of the optical setup is displayed
for clarity. The left electrode, which contains the trapping lens, is set at 1 V
relative to the right one, which holds the collection lens. The black dot denotes
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the average position of the trapped particle, 1.59 mm away from the flat base of
the aspheric lens. Figures 3.7(a) and 3.7(b) show the electric field components
in the vicinity of the particle. Considering an average amplitude of 100 nm for
the COM motion, the simulation shows a percent change of roughly 0.01% for
the z component of the electric field. Moreover, the x and y components are
four to five orders of magnitude smaller than the z component, thus providing
a firm foundation for our assumptions.

3.4.2
Electronics

In order to apply the feedback signal, essential steps were undertaken
regarding the implementation of an electronic setup aimed at preprocessing
the detection signal. First, it was crucial to address a strong DC component
present in the signal obtained from the photodetector. To prevent saturation
of the Red Pitaya RF input used in the experiment, an analog band-pass filter
was implemented for its capability to remove both DC and high-frequency
components effectively. While it’s common to opt for a Butterworth filter based
on the Sallen-Key topology [60], it is important to highlight that this choice
introduces an undesirable phase effect.

As demonstrated by simulation results showed in Fig. 3.8 (a), the addition
of a Butterworth filter results in a shift of the PSD central frequency, which
deviates from the theoretical prediction presented in [51]. To overcome this
problem a passive RC filter is used along with a non-inverter amplifier. As
evident from Fig. 3.8 (b), the comparison of the Bode diagrams for both
topologies illustrates that the passive filter will have minimal impact on
the signal phase, while simultaneously maintaining a flat band over a wider
frequency range.

The addition of a non-inverting amplifier after the band-pass filter
enables the utilization of the full resolution of the ADC on the Red Pitaya
board. Furthermore, a second amplifier is incorporated after the FPGA,
facilitating the generation of voltage values approximately ten times higher
than the board’s limit. Upon characterization of both amplifiers, we found that
the gains, A1 and A2, before and after the FPGA were measured as 11.00 V/V
and 11.27 V/V, respectively. These values will be necessary for the calibration
of the overall feedback gain Gfb, detailed in appendix 3.4.3.

In Fig. 3.8 (c) we illustrate an example of input and output signals of
the Red Pitaya. In order to implement the non-linear function, we employed
fixed-point arithmetic—a method for representing fractional numbers within
a specified range. This approach enables us to execute complex mathematical
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operations without suffering from information loss [61], as is often the case
with binary representation. Furthermore, it offers straightforward means of
extending the code to implement higher-order polynomial functions.

b)

a)

a)

c)

Figure 3.8: Filter design. (a) PSD’s obtained from simulations of a tweezed
nanoparticle (Ωz/2π = 81.5 kHz and Γm = 1.3 × 104 s−1) under the influence
of a cubic force. Three scenarios were considered: second-order Butterworth
filter with 1 kHz bandwidth (bright blue), 10 kHz bandwidth (middle blue)
and, lastly, with no filter (dark blue). (b) Bode diagrams of a highly selective
Butterworth filter (bright blue) and of a passive RC filter (dark blue), both
circuits were simulated using LTspice XVII. (c) Results from the FPGA
program. The dashed line represents the input, which is a triangular wave
with a frequency of 81 kHz. The solid line corresponds to the output, which is
proportional to the input raised to the third power.

3.4.3
Calibration of applied force

To validate the theoretical predictions outlined in [51], it was necessary
to calibrate the overall feedback gain Gfb, defined as

Gfb = CNVA2AdA
3
1C

3
mV , (3-20)

where A1 and A2 represent the gains originating from the electronic amplifiers,
Ad is the tunable digital gain defined within the FPGA, CmV is the calibration
factor which converts the measured voltage into corresponding displacement in
meters and CNV is the transduction coefficient that establishes the connection
between applied voltage across the electrodes and the resulting force applied
to the particle; see appendix 3.4.2 for further details.

To calibrate the photodetector, 1000 traces of 0.1 seconds were collected.
The PSD of the time traces is fitted by a Lorentizan distribution,
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SV (ω) = D

Γ2
mω

2 + (ω2 − ω2
0)2 , (3-21)

where D = 2ΓmkBTeffC
2
mV /m; this take in consideration that SV (ω) =

C2
mV Sz(ω) [50]. This procedure led to a calibration factor of CmV = (1.504 ±

0.073) × 104 V/m. After calibration of the detector, we proceed to determine
the transduction coefficient, denoted as CNV . To obtain CNV , we subjected
the particle to a series of sinusoidal signals with varying amplitudes and
measured the particle’s response in the position PSD [62]. For a particle
subjected to Eq. 4-1, the total PSD STz (ω) in the presence of an electric drive
Fel(t) = F0 cos(ωdrt) can be expressed as [62],

STz (ω) = Sz(ω) + Selz (ω) =
2ΓmkBTeff

m[(ω2 − ω2
0)2 + Γ2

mω
2] + F 2

0 τel sinc2[(ω − ωdr)τel]
m2[(ω2 − ω2

0)2 + Γ2
mω

2] , (3-22)

with 2τel being the duration of the measure. In Figure 3.9a), we display one
of the PSDs used for the electrode calibration. The thin line comes from the
electric force, Fel(t), and is compared to thermal noise base line as explained in
??. The resulting calibration curve is presented in Figure 3.9b), which yields a
transduction coefficient CNV = (3.06 ± 0.13) × 10−15 N/m. All measurements
described in the main text were performed with the same nanoparticle.

b)a)

Figure 3.9: Electrode calibration: (a) PSD obtained from a trapped nanoparti-
cle at 10 mbar and Teff = 293 K under the action of a sinusoidal drive (voltage
amplitude V0 = 10 V and frequency ωdr/2π = 90 kHz). b) Calibration curve
for electrodes used to map the applied voltage to the resulting force applied
on the nanoparticle.



4
Non-Gaussian state of motion

In this chapter, based on a published paper [63], we present an ex-
perimental protocol aimed at achieving state expansion and the emergence
of non-Gaussian features in the center-of-mass motion of an optically levi-
tated nanoparticle. The state expansion process leverages a parametric driv-
ing scheme involving sudden, non-adiabatic, transitions between two distinct
trap frequencies [64]. These frequency switches are implemented using square
wave pulses, which temporarily reduce the power of the trapping laser before
restoring it to its original value.

The particle’s state begins as a thermal state and is characterized by
a circular Gaussian distribution in phase space. The effect of the pulses
initially manifests as a elongation in the phase space distribution of the
system. A sudden reduction in trap stiffness, achieved by a decrease in trapping
potential, lowers the system’s potential energy while leaving the kinetic energy
unchanged. Due to the non-adiabatic nature of the pulse, the state does not
instantaneously adapt to the new potential, and the subsequent evolution
unfolds over the next quarter of the oscillation period, where the density
function evolves in phase space.

Points initially aligned along the position axis, having lost potential
energy, rotate toward the momentum axis as their energy converts into kinetic
form, resulting in reduced momentum amplitudes. Conversely, points along
the momentum axis, retaining their kinetic energy, extend into larger position
amplitudes as they evolve in the softened potential. This process transforms
the initially circular phase space distribution into an ellipsoidal shape with the
semi-major axis aligned along the position axis.

The rising pulse restores the trap stiffness to its original value. In the
subsequent quarter-period of oscillation within the stiffer trap, the dynamics
project the semi-major axis of the ellipse further along the momentum axis.
Simultaneously, the smaller momentum values along the position axis recede
even further, refining the ellipsoidal distortion in phase space.

As the next cycle of the square wave begins, the already elongated phase
space density undergoes the same transformation, further stretching into an
even longer elliptical shape. Repeated application of such pulses progressively
increases the oscillation amplitude of the particle, enabling it to explore the
non-linear, flatter extremities of the trapping potential (Fig. 2.3) while remain-
ing stably confined. This expansion into the non-linear regime allows the dy-
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namics to capture Duffing-like non-linearities, as previously demonstrated [65].
This scheme dynamically shapes the potential landscape creating bi-stability.
Classical effects have been discussed before, applied in fields such as memory el-
ements [66], signal amplification via stochastic resonance [67], non-equilibrium
physics [68], nonlinear dynamics, synchronization [69], and active escape dy-
namics [70]. It is also predicted to enhance force sensing capabilities of levitated
mechanics [71].

4.1
Theoretical model

We refer to the setting illustrated in (Fig. 4.1A), which depicts a
nanoparticle trapped in an optical tweezer in vacuum. In general, the particle
motion occurs in all three spatial directions (x, y, z), including cross coupling
between orthogonal directions of motion [69] and possibly involving rotational
motion as well. However, our analysis is focused only at the x motion.

We model the stochastically driven and damped oscillatory motion of a
levitated particle in a vacuum by a one-dimensional Langevin-type equation for
the time-dependent position x(t) of the centre-of-mass motion of the particle
of mass m in the trap, as discussed in (Sec. 2.5). However, we add a scaling
parameter, S(t), to control the scale of the restoring force term of Eq. (4-1)
which we control by modulating in time the power of the trapping laser as a
mean to implement the frequency pulses as illustrated in (Fig. 4.1B).

ẍ(t) = −Γmẋ(t) + S(t)F (x)
m

+ Ffluct(t)
m

, (4-1)
Moreover, the restoring force F (x) in the second term of Eq.(4-1) repre-

sents a nonlinear force directed along the gradient of the optical potential. Its
form, given by F (x) = −∂xU(x), was introduced in Eq.(2-7). The optical trap-
ping potential, U(x) , for the parabolic mirror configuration is approximated as
U(x) = ω2x2 + w2ξx4, where ξ = −0.1µm−2 characterizes the softening Duff-
ing nonlinearity. This parameter was experimentally determined, as detailed
in Ref.[65]. To validate the experimental findings, computer simulations, de-
scribed in (Sec.2.8), were conducted and compared with the collected data.

4.2
Experiment

The experimental setup is illustrated in (Fig. 4.1A). We use a parabolic
mirror to focus light at the wavelength of 1550 nm to a diffraction-limited
spot of the diameter of 1µm. A pulse generator (Berkeley BNC 525) and an
electro-optical modulator (EOM, Jenoptik AM1550b) are used to modulate
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Figure 4.1: Panel A: Schematic of experimental setup. A silica nanoparticle
is trapped by an optical tweezers in vacuum. An electro-optical modulator
(EOM) controlled by a pulse generator modulates the power of the laser. The
oscilloscope receives the signal from the particle. Its acquisition is triggered
by a synchronous signal from a pulse generator. Panel B: Illustration of the
square wave signal generated by the pulse generator, used to alternate the trap
frequency between two distinct values. The timing of the pulses is designed to
allow precisely one quarter of an oscillation period at each power level.

the laser intensity as a square-wave with high and low levels of 80 mW and
57 mW respectively, to trap a silica particle of close to spherical shape (460 nm
diameter) from a spray in the focal point. We monitor the centre-of-mass
motion of the trapped particle by detecting a small fraction of Rayleigh back-
scattered light from the trapping field with a single photodiode detector [72].

4.3
Data analysis

The calibration of motional amplitudes and the mass of the trapped
particle was performed under the assumption of perfect thermal equilibrium
between the particle and the surrounding gas at 5 mbar and 300 K. This was
achieved by fitting a Lorentzian curve to the trap frequency peak, as shown
by the green curve in Fig.4.2, following the procedure outlined in Ref.[72].
This approach allows the signal variance, measured in volts, to be directly
related to the thermal energy via the equipartition theorem, thereby providing
a conversion factor from volts to meters.

Here, we detail the procedure for extracting the x-component of the
particle’s motion through careful filtering. This process requires precision, as
it is well-established that improper filtering can significantly distort a signal.

The time-domain signal from the photodiode encodes information about
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Figure 4.2: PSD signal showing peaks at all three (z, x, y) directions of motion.
Green curve represents the curve fit of a Lorentzian at the relevant direction of
motion of the experiment. Band-pass filter function, in red, applied to isolate
only the x-component of the detected signal for further analysis.

the particle’s motion along all three spatial axes (x, y, and z). To analyze
these components, the time-domain signal is converted into a power spectral
density (PSD) in the frequency domain, following the methodology described
in Ref. [72]. The motion along the x, y, and z-axes manifests as distinct peaks
in the PSD, corresponding to their respective frequencies.

To isolate the x-component, we apply a discrete band-pass filter in post-
processing to the raw signal. The filter function is illustrated in Fig. 4.2. Special
care is taken to ensure that the filtered signal accurately represents the x-
motion and is not significantly altered by the filtering process. The optimal
results are achieved using a first-order band-pass filter with a bandwidth of
2 kHz centered around the frequency ωx/2π, as shown by the red curve in
Fig. 4.2. This approach ensures minimal distortion while effectively isolating
the desired component.

The effect of an abrupt change of the filter function applied to the time-
domain signal can be evaluated by checking the attenuation of a unit impulse
response, U(t − t0) for a pulse applied at time t0. Unit impulse response is
measured on a dB-power scale. The attenuation of the unit impulse response
given by A = 20 log10 |U(t− t0)| is used to evaluate the distortion requirement.
Our set target is to achieve attenuation below -80 dB and to minimize the
transient time for the impulse to attenuate to this level. For the filter used
in the experiment the transient time is 94.53 µs which corresponds to about
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Figure 4.3: Transient time for a impulse to be attenuated by the filter. The
blue line is the unit impulse response generated by the rapid change of the filter
function. The goal is to identify filter setting which minimise the ring-down
time of the unit impulse after applying the filter function. The green line is
the corresponding attenuation of the filter and is used to evaluate such decay
time. Our benchmark value of -80 dB attenuation is marked as red line. The
black dot is a marker when the targeted attenuation has been achieved, which
is after seven oscillations of the particle trapped in our experiment.

seven periods of the particle’s oscillation and is represented by the black point
in Fig. 4.3. This consideration is relevant since the squeezing pulses S(t) can
work as a unit impulse and unfavorably affect the processed signal.

To prepare bimodal states of motion the pressure is further reduced to
1×10−2 mbar and the particle resonance frequency ω/2π = 77 kHz is evaluated
from the spectrum of the signal at the high-power level. Next, state expansion
is achieved modulating the scale of the restoring force term of Eq. (4-1) as,

S(t) =

1, for t′ = 0 or t′ ∈ [τlow, τlow + τhigh],

0.71, for t′ ∈ [0, τlow].
(4-2)

Here t′ = t mod (τlow+τhigh). Each pulse is timed so that the particle completes
a quarter of an oscillation at the high-power level, τhigh = π/2ω = 3.25µs, and
another quarter of an oscillation at the low-power level, τlow = π/2ω

√
S =

3.48µs. The duration at the low-power level is slightly longer due to the re-
scaling of dynamics by the relative decrease of power as seen by the longer
negative pulses of (Fig. 4.1B). The particular value of low power level scaling
could not be too small since it would exaggerate the dynamical effects on
the particle to the extent that it would get ejected from the trap. Langevin
simulations were a valuable tool to find suitable parameter regimes.

One pulse sequence consists of a train of 55 pulses as constructed on the
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pulse generator to prepare the bimodal state, seen in green in the top plot of
(Fig. 4.4A). Data acquisition by the oscilloscope was synchronised with the
pulse generator and 689 pulse sequences are acquired with 518 ms between
successive sequences which is about 25 times longer than the extracted 20 ms
relaxation time, in good agreement with Eq.(2-12), allowing the particle to
relax back to the thermal state between consecutive runs.

Figure 4.4: Experimental time evolution of the standard deviation of the
particle position as measured by the photodiode (Blue/red line). Green line is
the intensity modulation function S(t), see (Eq. 4-1), applied to the trapping
laser beam via the EOM. Panel A: Dynamics at µs time scale showing details
of pulses and transient of state formation. Panel B: Dynamics at ms scale
allowing visualization of thermalisation due to gas collisions.

The particle’s velocity is inferred from position time series by numerical
differentiation. Each of the 689 experimental run produces a point in the phase
space that evolves in time as the pulse sequence is carried out. The time
evolution of this ensemble provides statistics for estimating the state density
distribution in the phase space, shown in (Fig. 4.5).

4.4
Computer simulation

We have integrated (Eq. 4-1) numerically using the Euler-Maruyama
method and sampling the initial values of position and momentum of the
particle from a thermal state as described in (Sec. 2.8). The results of our
analysis are shown as the phase-space probability distributions in (Fig. 4.6A-
C) showing that our one-dimensional description of the dynamics is sufficient
to produce the main features of experimental data.
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Figure 4.5: Experimental time-trace of the phase-space distribution of an
initial thermal state of motion of the particle subjected to our protocol.
Snapshots of distribution are indicated as black dots in (Fig. 4.4).

Figure 4.6: Comparisons between simulations (red lines) and experimental
reconstructions (blue lines) of the phase-space distributions associated with
paradigmatic states of motion of the levitated particle. Panels A and D:
Initial thermal state; Panels B and E: initial non-Gaussian bimodal state;
Panel C and F: The initial distribution is that of the motional state achieved
by stopping the dynamical protocol. Such state will eventually relax back to
a thermal configuration. Panels G, H and I: projection of the phase-space
distribution, with px the position probability function for the three initial states
described above.
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4.4.1
Results and Discussion

The trap non-linearity generating the non-Gaussian state is small in
typical experimental conditions [48]. Taylor expansion of the gradient force up
to third order shows that the inverse of the Duffing parameter is proportional
to the square of the beam’s waist. Considering it as a measure for the range
of nonlinearity, we note that it is larger than the spread of the thermal state
σthermal =

√
kBT/k, where k is the optomechanical spring constant and T the

motional temperature. This means that the particle hardly visits the nonlinear
part of the potential. By squashing the motional state, we induce sufficient
elongation such that the vertexes of the state are eventually extended to
nonlinear parts of the potential well and the non-linear effect dominates the
dynamics. In these regions, the particle’s dynamics is slower due to a softer
effective spring constant making the tip of the ellipse lag behind compared
to the faster harmonic behaviour near the centre. In the course of sufficiently
many weak pulses, the state changes its shape, steadily transforming it from
the initial circular thermal Gaussian to a squashed ellipsoidal and eventually
to curved spiral where probability mass starts to accumulate, forming a multi-
modal state.

To quantify the non-Gaussianity of the resulting simulated and experi-
mentally obtained states, we adopt a non-dimensional measure of bi-modality
[73],

AD =
√

2
σT

|µ1 − µ2|, (4-3)

where µ1,2 are the positions of the peaks of the distribution and σT =
√∑2

i=1 σ
2
i

is defined in terms of the individual peak’s variances σ1,2 [cf. Fig. 4.6H]. By
curve fitting a double Gaussian function to our experimental and simulated
data we find the values of AexpD = 3.95 and AsimD = 3.32 in good agreement with
12% deviation which we identify to be originated by a small difference in the
shape of the real trapping potential from the simulated one. The influence of
the potential’s non-linearity is understood to be negligible in the linear section
near the trap centre and to become dominating towards the asymptotically flat
edges of the optical trap. Despite knowing general features of the non-linearity
of the potential well, its exact profile is not experimentally known. As such,
simulations assuming an ideal sharp beam profile were found to deviate more
from the experimental results. We also find that the experimental thermal
state has some outlier points that overextend the tails of Gaussian distribution,
which are not included in the simulations and contribute to a softening of the
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potential and a larger value for AexpD . We explain outliers by a build-up of
amplitude as a net effect from multiple collisions by background gas particles
or other perturbations affecting the trap.

4.5
Pre-cooled state

The quantum regime of this scheme has been shown in an analogous
circuit QED architecture [74]. Moreover, theoretical estimations [75] show
a quantitative perspective for levitated nanoparticles and the emergence of
genuine quantum features of motion from a sufficiently coherent initial state
of the particle [25, 24, 26, 27, 76]. In the quantum regime this would result
in negative phase-space distributions, thus unambiguously demonstrating non-
classicality, reminiscent of Schrödinger cat-like states of significant relevance for
quantum information processing and fundamental tests of quantum mechanics.

To bring the experiment closer to the quantum regime, we repeated the
same protocol with the addition of feedback cooling to initialize the particle
in a state with a lower phonon occupation number [72, 77]. Experimentally,
this was achieved using lock-in amplifiers which track the movement of the
particle and provide the control signal suitable for cooling it’s COM motion,
as illustrated in the experimental setup shown in (Fig. 4.7).

Figure 4.7: Experimental setup for pulse-driven state expansion:
Schematic of experimental setup. A silica nanoparticle is trapped by an opti-
cal tweezers in vacuum. An acusto-optical modulator (AOM) controlled by a
signal generator (SG) and lock-in amplifier (LI) modulates the power of the
laser, which serves as the mechanism to modulate the intensity of the driving
laser and thus control the trapping potential of the particle. The oscilloscope
(O’scope), triggered by a synchronous signal from the SG, records the sig-
nal from the particle. The polarising beam splitter (PBS) and λ/4 waveplate
routes the particle’s movement signal towards a photo-detector. The particle
displacement is detected to implement parametric and electric cooling mecha-
nisms to lower the energy of the translational degrees of freedom of the system
in three directions (only one direction shown in the figure).

All data analysis procedures followed the same methodology as described
in the previous experiment. An example of data from a single experimental run
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is shown in (Fig.4.8). The time evolution of the density function is illustrated in
(Fig.4.9), while the key experimental parameters are summarized in (Tab. 4.1).

begining of pulses

higher harmonics and

modes of oscillation

filter ring down

attenuating pulses

Figure 4.8: Panel A: Raw time trace recorded by the oscilloscope in Volts.
It is possible to Panel B: Filtered time trace converted to SI units. Panel
C: Numerically differentiated position time trace, used to infer the particle’s
velocity. The plots B and C shows the time evolution of a single point in
the position-velocity phase space. This process is repeated for all experimental
runs and the dense scatter plot shown in Fig. 4.12 is produced

Parameter Value
ωx/2π 137.0 kHz
ωy/2π 106.4 kHz
ωz/2π 77.6 kHz
pressure 3 × 10−7 mbar
mass 7.54 × 10−18 kg
Cooled state position variance (3.21 ± 0.11) × 10−20 m2

Cooled state momentum variance (4.12 ± 0.14) × 10−43 kg2m2s−2

Cooled state ocupation number (1154.3 ± 42.3)

Table 4.1: Summary of experimental parameters.
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Figure 4.9: Levitated nanoparticle’s position-momentum phase space expan-
sion of an initial low ocupation phonon thermal state. The state expands be-
yond the linear size of the particle itself and eventually develop non-Gaussian
features from the nonlinear tails of the optical potential.

By fitting a Lorentzian profile to the spectrum of each harmonic trap
frequency and applying the equipartition theorem at an assumed temperature
of 300 K, we calibrate the system and subsequently calculate the position
variance of the z translational mode as σ2

300K = (2.30 ± 0.03) × 10−15 m2. The
detected signal of particle’s displacement is used to cool its three translational
degrees of freedom, while the pressure is brought down to 3 × 10−7 mbar. The
transversal x and y modes are cooled by parametric feedback all the way down
to a level ensuring that the translational degrees of freedom are mutually
decoupled. We can thus focus on one mode only and treat the problem as
quasi-one-dimensional for the z axis. Such mode is cooled electrically by cold
damping using an electrode actuating on the charged particle with a uniform
electric field proportional to the particle’s z velocity. The cooled state has a
position variance σ2

cold = (3.21 ± 0.11) × 10−20 m2, which corresponds to an
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effective centre-of-mass temperature of

Teff = 300 K × σ2
cold

σ2
300K

= (4.18 ± 0.15)mK, (4-4)

and mean occupation number n̄ = (eℏωz/kBTeff −1)−1 = (1154.3±42.3) phonons,
kB standing for Boltzmann’s constant. Fig. 4.11 illustrates the growth of the
semi major axis, during the initial pulses within the first 1 ms of the protocol.
With the system remaining in the harmonic approximation of the potential the
expansion is exponential. This rapid expansion stage is driven by the protocol’s
dynamics and is characterized by a time constant of τprotocol = 68.6µs, which
is much faster than the thermalization due to gas collisions, occurring on a
timescale of seconds at the experimental pressure, as described by (Eq. 2-12).

The initial exponential expansion continues up to tpeak = 1.07 ms, when
we reach the first peak of the curve. At such time, we have an expansion of
28.4 dB, which corresponds to σz(tpeak) = 124 nm. Remarkably, this is 24%
larger than the nanoparticle dimension, and 158% larger than the correspond-
ing thermal spread at 300 K, which is quantified by the expression [78]

λth,T =

√√√√ ℏ
2mωz

coth
(

ℏωz
2kBT

)
. (4-5)

After the initial exponential expansion, the non-linearity of the trap kicks in
and the expansion starts a damped oscillatory behavior and stabilize in an
steady state non-equilibrium configuration, characterized by a non-Gaussian
multi-modal distribution as discussed previously.

After 6.7 ms, the protocol stops to leave room for feedback, which causes
the non-equilibrium state to relax toward the asymptotic, cold state with an
initial exponential time constant of τfeedback = 44 ms as seen in (Fig. 4.10).

4.6
State tomography

The phase-space distributions discussed so far are classical, inferring
velocity from position data, and fail to capture the full quantum behavior
of the system. To achieve quantum state tomography and reconstruct the
Wigner function, the inverse Radon transform (Eq.4-6) is employed. This
method integrates the position probability marginal over projection angles that
uniformly evolve during one oscillation period, as outlined in Ref.[39]. Under
harmonic oscillator dynamics, the Wigner function undergoes uniform circular
motion in phase space, naturally providing access to position probability
marginals across a full cycle of projection angles. This is analogous to the
rotation of medical tomography scanners but eliminates the need for actively
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Figure 4.10: Non-Gaussian to low phonon state: After the pulse sequence
concludes, the particle evolves into a non-Gaussian state. At this point,
feedback cooling is applied to drive the particle back into a cooled state.

rotating the projections. Here, the position probability density recorded over
a complete cycle serves as projection data, forming the input for the inverse
Radon transform to reconstruct the phase-space distribution, as illustrated in
Fig. 4.13.

W (x, y) =
∫ π

−π

∫ ∞

−∞
ρx(θ, s) δ(s− x cos θ − y sin θ) ds dθ, (4-6)

This method provides a more comprehensive representation of the phase-
space distribution by relying solely on position information while enabling the
detection of negativity—a defining feature of quantum mechanics that emerges
in the presence of quantum coherence. Validation with QuTiP confirms that
quantum superposition states can be accurately reconstructed using the inverse
Radon transform, provided the state’s coherence remains largely intact over
a complete oscillation cycle. The method functions analogously to a shutter,
requiring at least one full oscillation for reconstruction. Deviations from this
requirement, due to decoherence or other factors, result in a blurred and less
accurate phase-space representation.

The experimentally detected position trajectory, recorded as a time-
resolved dataset by the oscilloscope, captures the particle’s oscillatory mo-
tion in vectorized form. These trajectories are processed to estimate the time-
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line. Within the first 1 ms, at an exponential timescale of τprotocol = 68.6µs,
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configuration, characterized by a non- Gaussian multi-modal distribution
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Figure 4.12: Phase-space distribution of position and momentum for the
nanoparticle. From top-left subpanel we show the evolution of an isotropic
initial state at 4.2 mK within a 0.8 ms timeframe.

dependent position probability density function, which is subsequently repre-
sented in a rasterized format known as a sinogram in tomographic imaging.
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Figure 4.13: Trajectories: A plot of multiple trajectories acquired during each
experimental run over the initial segment of the expansion protocol. The red
lines near 2 ms demarcate a data segment containing one complete oscillation
period (−π, π), which is necessary for the inverse Radon transform. Sinogram:
The probability density estimate derived from the red-marked segment near
2 ms, represented in a tomographic sinogram format.

A sinogram provides a two-dimensional representation of projection data col-
lected at various angles, serving as the foundational input for reconstructing
the phase-space distribution via the inverse Radon transform. In practice, this
reconstruction is efficiently implemented using image processing library tools.
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Figure 4.14: Reconstruction of the Wigner function from the sinogram in
(Fig. 4.13) using the inverse Radon transform algorithm.



5
Detection model

In this chapter we theoretically examine the scattering information
patterns of a dipolar nanoparticle illuminated by arbitrary paraxial structured
light fields with uniform polarization. These directional information patterns
enable us to predict the probability of detecting a scattered photon that
encodes information about the nanoparticle’s center-of-mass (COM) position
along the orthogonal x, y and z axes, as a function of the spherical coordinates
θ, ϕ. Our objective is to compute the total imprecision power spectral density
(PSD), integrated over the solid angle. Furthermore, we evaluate the effective
detection efficiency for motion along the x, y, z directions.
The discussion on position detection presented here, assumes that the optical
field is used solely for detecting the particle’s COM position and does not
necessarily provide the restoring force. This assumption allows for levitation
by alternative means, such as electric or magnetic fields [15]. Additionally, we
consider the probe light within the paraxial approximation, enabling the use
of Hermite-Gaussian modes.

5.1
Setup

5.2
Dipole Recoil Hamiltonian

We operate under the dipole approximation by considering a nanoparticle
with a radius much smaller than the wavelength of the probe beam, effectively
treating it as a point-like dipole. In this regime, the nanoparticle’s scattering
properties are governed by its polarizability α, which encapsulates the response
of the material to the incident electric field. The incident electric field of the
probe induces a dipole moment p in the nanoparticle, described by p = αE(r),
where E(r) is the local electric field at the nanoparticle’s COM position r.

The interaction between the induced dipole and the oscillating electric
field results in a potential energy given by E = α

2 |E(r)|2. This energy represents
the cost of polarizing the nanoparticle in response to the external field and will
give rise to the interaction Hamiltonian between light field and mechanical
modes.

In our setup, the total electric field at the position of the nanoparticle
has two contributions: the classical probe field Epr(r, t) and the quantized
free electromagnetic field Êf (r). Thus, the combined electric field is given
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by Ê(r, t) = Epr(r, t) + Êf (r). We assume that the probe field dominates,
such that |⟨Êf (r)⟩| ≪ |Epr(r, t)|, for any relevant states of the free field. This
allows us to simplify the interaction Hamiltonian by neglecting terms of order
O(|⟨Êf (r)⟩|2).

This approximation is key for our analysis, as it reduces the complexity
of the system and allows us to primarily consider the effect of the structured
probe light on the nanoparticle’s position detection, while the influence of
the vacuum fluctuations from the free electromagnetic field remains a small
perturbation.

HI = −1
2αEpr(r, t)2 − αEpr(r, t) · Êf (r), (5-1)

The first term in the interaction Hamiltonian represents the optical potential,
which generates the restoring force necessary for trapping and stabilizing
the particle through optical levitation. This term describes the conservative
interaction between the induced dipole moment of the nanoparticle and the
oscillating electric field of the laser, effectively creating a potential well that
confines the particle.

However, in our analysis, we will neglect this term, assuming that the
particle is trapped by an external mechanism (e.g., electrostatic or magnetic
fields) rather than relying on the optical potential for confinement. Instead,
our focus will be on the second term in Eq. (5-1), which describes the dipole
recoil Hamiltonian.

The dipole recoil Hamiltonian captures the interaction between the
induced dipole moment of the nanoparticle and the scattered photons, leading
to recoil effects. These recoil kicks result in momentum transfer that influences
the particle’s mechanical motion, contributing to heating and momentum
diffusion.

This same Hamiltonian also describes how the particle’s motion mod-
ulates the scattered light, coupling the center-of-mass position to changes in
the electromagnetic field. As a result, variations in the scattered light carry
information about the nanoparticle’s movement.

Thus, the dipole recoil Hamiltonian plays a dual role: it governs the recoil
effects influencing the mechanical dynamics and provides the fundamental
mechanism for optically detecting the particle’s motion through the scattered
light field.

Hrecoil = −αpEpr(r, t) · Êf (r). (5-2)
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5.2.1
Probe Electric field

Lets consider illumination by a paraxial structured light beam with
uniform polarization along x axis, ux. The beam is generated by a coherent
superposition of Hermite-Gaussian (HG) modes, where the complex coefficients
cmn = amn + ibmn determine the relative weights and phases of each mode.
The phase of the beam consists of three components: the Gouy phase shift
ψmn(z) = (m + n + 1) arctan(z/zr), plane wave propagation k0z and time
evolution ω0t. The electric field of the probe beam can be expressed as:

Epr(r, t) = Re


(∑
mn

cmnAmn(r)eiψmn(z)
)

× e−ik0zeiω0t

ûx. (5-3)

The amplitude, Amn(r), given below, is defined in terms of Hermite
polynomials Hm(x) and Hn(y), combined with a Gaussian envelope. It includes
a normalization factor Nmn = 1

w(z)

√
2−(n+m−1)

πm!n! , where w(z) is the beam waist.
This normalization ensure equivalent power for any mode with arbitrary values
of m and n.

Amn(r) = NmnHm

(√
2x

w(z)
)
Hn

(√
2y

w(z)
)

exp
(

−x2 + y2

w(z)2

)
. (5-4)

In what follows we expand the probe beam field Eq. (5-3) around
particle’s equilibrium position (r=0) to first order in the position r. To
streamline the presentation and avoid cumbersome equations, we introduce
the symbols EP

pr and EQ
pr to represent the terms proportional to the cosine and

sine components of the time evolution, respectively,

Emn
pr (r, t) ≈

[
EP
pr cosω0t+ EQ

pr sinω0t
]
ûx (5-5)

At the origin, the field amplitude is a constant scalar number Amn(0) =
A(0)
mn and the gradient of the field is a constant vector ∇Amn|r=0 = ∇A(0)

mn.
We also define a vector smn = (0, 0, k0 − ψ′

mn(0))T that reflects the effective
longitudinal wavenumber close to the focus due to the Gouy phase shift. With
these definitions the components of (Eq.5-5) are written as,
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EP
pr =amn(A(0)

mn + r · ∇A(0)
mn)

+ bmnA
(0)
mnr · smn, (5-6)

EQ
pr =amnA(0)

mnr · smn
− bmn(A(0)

mn + r · ∇A(0)
mn). (5-7)

5.2.2
Quantized free space field

The free electromagnetic field is treated quantum mechanically with
creation and annihilation operators satisfying [aϵ(k), a†

ϵ′(k′)] = δϵϵ′δ(k − k′).
Where uϵ(k) is the polarization vector for any mode with wavevector k and
dispersion relation ω = c|k|. We decompose it into a basis of plane waves as
follows

Ef (r) = i
∑
ϵ

∫
d3k

√
ℏω

16π3ε0
uϵ(k)

×
(
aϵ(k)eik·r − a†

ϵ(k)e−ik·r
)

(5-8)

Expanding the free field to first order in the particle’s position around
r = 0,

Ef (r) ≈
∑
ϵ

∫
d3k

√
ℏω

16π3ε0
uϵ(k)

×
[
i
(
aϵ(k) − a†

ϵ(k)
)

− k · r
(
aϵ(k) + a†

ϵ(k)
)]
. (5-9)

5.3
Coupling constant

With the linearized forms of the probe and free space fields, we can now
focus on the dipole recoil Hamiltonian (Eq. 5-2),

Hrecoil =
∑
mn

∑
ϵ

∫
d3kG(k, ϵ) ×

{
HP
mn cos(ω0t) +HQ

mn sin(ω0t)
}
,

(5-10)
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where the coupling strength between the probe field and each plane wave mode
is expressed by,

G(k, ϵ) = α

√
ℏω

16π3ε0
(ux · uϵ(k)). (5-11)

The function G(k, ϵ) quantifies the interaction based on the wavevector
k and polarization ϵ, capturing the overlap between the polarization of the
probe field and the scattered field mode. The terms proportional to cosine and
sine in (Eq. 5-10) are,

HP
mn =i

(
aϵ(k) − a†

ϵ(k)
)
bmnAmn

0 (5-12)

+ r ·
[

− k
(
aϵ(k) + a†

ϵ(k)
)
bmnAmn

0 (5-13)

+ i
(
aϵ(k) − a†

ϵ(k)
)

(∇Amnbmn + smnAmn
0 b̃mn)

]
+ O(r2), (5-14)

and

HQ
mn = − i

(
aϵ(k) − a†

ϵ(k)
)
b̃mnAmn

0 (5-15)

+ r ·
[
k
(
aϵ(k) + a†

ϵ(k)
)
b̃mnAmn

0 (5-16)

+ i
(
aϵ(k) − a†

ϵ(k)
)

(−∇Amnb̃mn + smnAmn
0 bmn)

]
+ O(r2), (5-17)

respectively.
The dipole recoil Hamiltonian (Eq. 5-10) has two main contributions, one

oscillating with cos(ω0t) and another with sin(ω0t). The term with cos(ω0t) is
represented by

HP
mn = i

(
aϵ(k) − a†

ϵ(k)
)
amnA

(0)
mn

+ r ·
[

− k
(
aϵ(k) + a†

ϵ(k)
)
amnA

(0)
mn

+ i
(
aϵ(k) − a†

ϵ(k)
) (

∇A(0)
mnamn + smnA(0)

mnbmn
) ]

+ O(r2). (5-18)

and the term evolving with sin(ω0t)
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HQ
mn = − i

(
aϵ(k) − a†

ϵ(k)
)
bmnA

(0)
mn

+ r ·
[
k
(
aϵ(k) + a†

ϵ(k)
)
bmnA

(0)
mn

+ i
(
aϵ(k) − a†

ϵ(k)
) (

−∇A(0)
mnbmn + smnA(0)

mnamn
) ]

+ O(r2). (5-19)

Let us now remove the time dependence of the recoil Hamiltonian
by applying a rotating wave approximation. This amounts to making the
substitution

aϵ(k) → aϵ(k)e−iω0t (5-20)

and its complex conjugate, and neglecting fast rotating terms at frequency
±2ω0. We get the dipole recoil hamiltonian in the form,

Hp =
∑
ϵ

∫
d3k

G(k, ϵ)
2

{
aϵ(k)

[
icmn(A(0)

mn + r · ∇A(0)
mn) (5-21)

+ cmnA
(0)
mnr · (smn − k)

]}
+ h.c. (5-22)

.

5.3.1
Interacting modes

In this section, we introduce the interacting modes that simplify the
recoil Hamiltonians into the linearized optomechanical interaction (Eq. 5-29).
We start with defining the first family of auxiliary modes in the form of a
linear combination of the annihilation operators ai ∝ ∑

ϵ

∫
d3k Gi(k, ϵ)aϵ(k).

These correspond to dipole patterns for dipoles oriented along x, y and z.

ai(ω) = −
√

3c
8πω2

∑
ϵ

∫
d3k δ

(
k − ω

c

)
(ui · uϵ(k)) aϵ(k) (5-23)
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Using [aϵ(k), a†
ϵ′(k′)] = δϵϵ′δ(k − k′) and k/k = (sin θ cosϕ, sin θ sinϕ, cos θ)T ,

we can show that the modes are independent.

[ai(ω), a†
i′(ω′)] = 3c

8πω2

∑
ϵ

∫
k2dk

∫
dΩ δ

(
k − ω

c

)
δ

(
k − ω′

c

)
(ui · uϵ(k)) (ui′ · uϵ(k))

= 3
8πδ (ω′ − ω)

∫
dΩ

∑
ϵ

(ui · uϵ(k)) (ui′ · uϵ(k))

= 3
8πδ (ω′ − ω) δii′

∫
dΩ

(
1 − k2

i

k2

)
= δ (ω′ − ω) δii′ . (5-24)

We also benefit by defining the second family of auxiliary modes in the form
aij ∝ ∑

ϵ

∫
d3k kj Gi(k, ϵ).

aij(ω) = −
√

15c
8πω2mij∑

ϵ

∫
d3k

kj
k
δ
(
k − ω

c

)
(ui · uϵ(k)) aϵ(k). (5-25)

The constant terms are introduced so that the interacting modes also satisfy
the commutation relations [aij(ω), a†

i′j′(ω′)] = δ (ω′ − ω) δii′δjj′ . And mij =
2 − δij is a factor that comes out of angular integrals.

The COM degree of freedom is coupled to each mode, with the coupling
strength depending on both the propagation direction of the plane wave and
its frequency. Using these modes we can rewrite the dipole hamiltonian as,

Hp =
∫
dω gp

{[
icmnA

(0)
mn

+ r · cmn(i∇A(0)
mn + A(0)

mnsmn)
]
ax(ω)

− cmnA
(0)
mnk

∑
i

√
mxi

5 riaxi(ω)
}
. (5-26)

The interaction modes can be redefined by incorporating certain param-
eters into the auxiliary modes,

b0(ω) = icmnA
(0)
mnax(ω), (5-27)

bi(ω) = cmn(i∂iA(0)
mn + A(0)

mns
mn
i )ax(ω)

− cmnA
(0)
mnk

√
mxi

5 axi(ω). (5-28)

Using these modes we can finally rewrite the dipole Hamiltonian in the
form of the linearized optomechanical interaction,
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Hrecoil =
∫
dωgp(b0(ω) +

∑
ribi(ω)) + h.c. (5-29)

where

gp = αp

√
ℏω3

24π2ε0c3 . (5-30)

The interpretation of the modes bi(ω) is that each of these operators
define a spatial mode of the field that carries away information of each
coordinate x, y and z of the particle.

5.4
Information pattern

Let us consider a scenario in which a photon from the probe laser interacts
with a particle displaced along the i-th position variable and subsequently
scatters into the free field. This process can be equivalently described as the i-
th interaction mode creating a photon, b†

i |0⟩. This photon encodes information
about the particle’s displacement, making its detection of fundamental interest.

Rather than restricting our analysis to a single frequency, ω, we generalize
the description by introducing a multi-mode operator weighted by a function
f(ω). This weight function is normalized such that

∫
dω|f(ω)|2 = 1 and can be

chosen to be arbitrarily narrow or broad around a frequency of interest. The
corresponding operator is given by,

bi =
∫
dω f(ω)bi(ω), (5-31)

where bi(ω) is defined by (Eq. 5-27).
To proceed, we consider the state |ψ⟩ = b†

i |0⟩, representing a single
photon distributed over the chosen frequency band defined by f(ω). Our goal is
to study the probability of this photon being scattered into a specific direction.
To achieve this, we evaluate the free-space number operator acting on the state
|ψ⟩,

ρi(θ, ϕ) = ⟨ψ|
∑
ϵ

∫
dkk2a†

ϵ(k)aϵ(k) |ψ⟩ (5-32)

ρi(θ, ϕ) =
∑
ϵ

∫
dkk2 ⟨0| bia†

ϵ(k)aϵ(k)b†
i |0⟩ . (5-33)

This approach allows us to extract the directional scattering information
encoded in the photon’s state, as demonstrated with examples in the next
sections. To achieve this, we need to evaluate the commutator that appears in
the eigen-equation aϵ(k)b†

i |0⟩ =
(
[aϵ(k), b†

i ] + b†
iaϵ(k)

)
|0⟩.
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[aϵ(k), b†
0] = icmnA

(0)
mnFx(k, ϵ) (5-34)

[aϵ(k), b†
i ] = cmn

[
(A(0)

mns
mn
i + i∂iA

(0)
mn)Fx(k, ϵ)

− A(0)
mnk

√
mxi

5 Fxi(k, ϵ)
]
. (5-35)

In which we defined

Fi(ϵ,k) = [aϵ(k), a†
i ] = −

√
3c

8πk2f(ck) (ui · uϵ(k)) (5-36)

Fij(ϵ,k) = [aϵ(k), a†
ij] = −

√
15c

8πk2mij

kj
k
f(ck) (ui · uϵ(k)) .

The scattering modes providing information about the particle dispace-
ment we can compute the dipole information pattern

ρ0(θ, ϕ) ∝ 3c
8πk2

(
1 − k2

x

k2

) ∣∣∣∣∣∑
m,n

[icmnAmn
0 ]

∣∣∣∣∣
2

(5-37)

ρi(θ, ϕ) ∝ 3c
8πk2

(
1 − k2

x

k2

) ∣∣∣∣∑
m,n

[icmn∂iAmn − cmnAmn
0 (ki − smni )]

∣∣∣∣2. (5-38)

5.4.1
The Gaussian beam

The Gaussian beam represents the simplest case of particle illumination,
and its scattering modes are illustrated in (Fig. 5.1). There is a scattering
contribution independent of the particle’s position, as described by (Eq. 5-37),
with an angular distribution characteristic of dipole scattering. However, for
displacements along the x, y, and z directions, the scattering modes exhibit
angular dependence, as outlined in Eq. 5-38. These effects are consistent with
classical calculations presented in [79].
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Figure 5.1: Illumination by the Gaussian beam Dipole scattering is always
present and remains independent of the particle’s displacement. In contrast,
information about displacements along the x, y, and z directions exhibits a
more complex angular dependence. The scattering intensity is represented by
both the radial distance from the origin and the color scheme, where yellow
denotes high intensity and blue indicates low intensity. However, the color
scheme and scale are not consistent across all panels, as the primary goal of
the plot is to highlight the directionality of the scattering rather than provide
direct intensity comparisons between panels.

The scattering pattern associated with z-displacement (Fig. 5.1) suggests
that collecting back-scattered light provides higher information content about
the particle’s axial displacement. Since the particle’s position is encoded in the
phase of the scattered field, this indicates that back-scattered light exhibits
greater phase sensitivity to z-displacements. Consequently, low oscillation
amplitudes are better resolved against the noise floor. However, at high
oscillation amplitudes, phase wrapping can occur, leading to distorted signals.

In contrast, front-scattered light exhibits the opposite behavior, making
it potentially more suitable for expansion schemes where the particle undergoes
large oscillation amplitudes. This behavious is illustrated in (Fig. 5.2).
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Figure 5.2: Simulated ring-down dynamics and particle signal detec-
tion. Backward signal: Higher phase sensitivity enables better resolution of
small motion amplitudes but can result in phase wrapping at large motion am-
plitudes. Forward signal: Exhibits lower phase sensitivity and is more prone to
domination by technical noise at low motion amplitudes, as typically observed
in ground-state cooling scenarios. However is arguably better for schemes using
expanded states with high oscillation amplitudes.

5.4.2
Higher order beams

The HG01 mode, depicted in (Fig.5.3A), provides information exclusively
about the particle’s x-position, as illustrated in Fig.5.3D. This arises because
the only non-zero contribution to (Eq. 5-38) is the directional derivative of the
field along x. In contrast, the field itself, as well as its derivatives along y and
z, vanish.

The HG10 mode functions similarly, providing information about the
particle’s y-position. The resulting scattering pattern is identical to that shown
in Fig. 5.3D, with the roles of x and y interchanged.

The LGl=1,p=0 mode, shown in (Fig.5.3C), is a linear combination of
HG10/

√
2 and iHG01/

√
2. Consequently, it provides position information

about both x and y, as illustrated in (Fig.5.3D).
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Figure 5.3: Scattering patterns and position information for Hermite-
Gaussian and Laguerre-Gaussian modes. (A) The HG01 mode provides
information exclusively about the particle’s x-position, as only the directional
derivative along x is non-zero. (B) The HG10 mode provides information about
the particle’s y-position, with a scattering pattern identical to HG01, but
with the roles of x and y interchanged. (C) The LGl=1,p=0 mode is a linear
combination of HG10/

√
2 and iHG01/

√
2, providing position information

about both x and y. (D) Scattering patterns for the modes, illustrating how
information is encoded in the angular distribution.

5.4.3
Projecting information forward

The use of the fundamental Gaussian beam results in an information
pattern where most of the information is directed backward, as illustrated
in (Fig. 5.4A). In contrast, employing a Hermite-Gaussian HGm=2,n=0 mode
produces an information pattern that directs most of the information forward.
This behavior arises from the steeper Gouy phase shift near the origin
associated with higher-order modes. Such a forward-scattering configuration
could significantly reduce the overhead of implementing phase stabilization in
interferometric setups, as the forward-scattered light remains collinear with
the original incident field, simplifying phase reference alignment compared to
backscattered light.

To fully understand this phenomenon, a non-paraxial analysis of the
Gouy phase anomaly should be conducted, as deviations from paraxial approx-
imations may influence the scattering patterns and their practical implications
in interferometry.
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Figure 5.4: A: Angular distribution of information for Gaussian beam. B:
Angular distribution of information for Hermite-Gauss m = 2, n = 0 beam.
The pattern is not axially simetric along z but has a broader xz profile

5.4.4
Decoherence on rotating saddle beam

Stable optical trapping has been proposed in a structured beam with an
intensity profile resembling a saddle [80]. The saddle trap involves a situation
where the light field and its gradient vanish in the center of the trap and (Eq. 5-
38) do not convey information about the particle’s position to first order in
the dipole interaction. Furthermore, second-order effects, being even functions,
cannot provide which-path information for superposition states involving
diametrically opposed coherence on position basis [81, 82]. Specifically, the
localization term for such states vanishes, ρloc(x,−x) = −Γ

2 ⟨x|[x2, [x2, ρ]]| −
x⟩ = 0. This symmetry ensures that decoherence is suppressed, and can become
a useful resource for experiments aiming to produce quantum superposition
states.

Parametric cooling requires actuating on the laser power at the second
harmonic of the position signal. In systems with linear position readout,
such as Gaussian beam trap, the direct signal must be processed externally
with electronics to generate the second harmonic. Once extracted, this second
harmonic provides a pathway to cool the particle’s mechanical state using
a parametric modulation. This approach leverages the harmonic response to
effectively dissipate energy from the mechanical degrees of freedom.

The information provided by the saddle trap is encoded in the second
harmonic of the particle’s signal. This direct redout can be effectively utilized
to cool the particle’s mechanical state through parametric modulation [81].
Such an approach offers a promising pathway toward quantum states, enabling
the preparation of cold mechanical states while preserving the quantum
coherences that are crucial for advancing quantum applications.
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6
Outlook

Optical levitation provides a robust platform for stably trapping nanopar-
ticles, intrinsically integrating position readout and enabling precise control
over their mechanical motion. The center-of-mass motion of a nanoparticle has
already been cooled to its quantum ground state [24, 25, 26, 27, 28]. However,
the preparation of nonclassical motional states remains a formidable challenge,
predominantly due to intrinsic recoil heating and decoherence mechanisms
originating from the same light field employed for trapping and control.

A significant limitation arises from the mismatch between the spatial
scale of readily available nonlinearities and the coherence length of quantum
states. The intrinsic nonlinearity of the optical potential is fundamentally
constrained by the diffraction limit of the beam, typically on the order of
500 nm, while the spatial extent of the ground-state wavefunction is only a
few picometers. Expanding the ground-state wavefunction while preserving
the particle’s mechanical energy is an inherently challenging task. Furthermore,
maintaining quantum coherence is particularly demanding: photons interacting
with the particle continuously encode positional information, even in the
absence of significant momentum transfer, rendering the high photon flux a
highly effective source of decoherence.

Recent experiments have shown initial progress toward achieving coher-
ent expansion of quantum states. However, the gap between current capabili-
ties and the requirements for the robust generation of quantum non-Gaussian
states remains substantial, with improvements still needed across several orders
of magnitude to enable truly impactful implementations.

Based on the findings presented in this thesis, we propose two potential
approaches to address this issue. The first approach involves coupling external,
sharper nonlinearities to the system, effectively reducing the spatial extent
over which they dominate. This enables the preparation of smaller states,
which helps mitigate decoherence effects by minimizing the spatial footprint
of the system. The second approach seeks to induce nonlinearities through the
use of tailored light fields engineered to greatly suppress position localization
decoherence.

Coupling nonlinearities can be achieved by electronically processing
position signals and feeding them back into the system, as demonstrated in the
proof-of-principle experiment described in Chapter 3. This approach provides
a promising pathway for the controlled generation of non-Gaussian states with
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reduced spatial extent. These states are expected to exhibit greater resilience
to recoil heating and decoherence, particularly when their spatial spread is
maintained significantly smaller than the photon wavelength, where positional
resolution becomes inherently limited.

Further refinement of these methods could enable the preparation of
non-Gaussian states with reduced occupation numbers, which is expected to
promote the emergence of quantum coherence. In addition to utilizing exter-
nal electric forces with non-homogeneous characteristics, parametric modula-
tion of the optical trap—carefully designed to induce nonlinearity and damp-
ing—offers a promising pathway for accessing and stabilizing low-occupation-
number non-Gaussian states. Preliminary computer simulations have demon-
strated the feasibility of this approach, indicating that experimental imple-
mentation is within reach. This method provides a significant advantage by
maintaining the particle trapped throughout the state preparation process,
thereby avoiding the complexities associated with free-flight protocols.

However, it is important to note that electronic noise introduced during
signal processing could create a new decoherence channel, potentially offsetting
the benefits of this approach. Mitigating such noise will be essential to
ensure the robustness of the method and preserve the coherence of the
prepared states. It is also likely that partial progress will initially be made by
generating statistical mixtures of high-quality bimodal states before achieving
the preparation of true quantum non-Gaussian states. Such intermediate
results could provide valuable insights and benchmarks for advancing toward
fully quantum non-Gaussian state generation.

In the second approach, optical fields are employed to suppress decoher-
ence. Structured optical gratings, constructed from tailored light fields, offer a
promising method for generating non-Gaussian parity-position states. For this
approach to be effective, these gratings must be meticulously designed to min-
imize decoherence while maximizing the interaction time between the particle
and the structured optical field. However, these optical fields are not inher-
ently confining and instead act as gratings through which the particle must
traverse. Protocols such as ‘throw-and-catch,’ where the particle is temporarily
released and later recaptured, present a potential strategy for extending inter-
action times. Nevertheless, recapturing the particle in shallow traps introduces
significant engineering challenges, particularly due to the combined effects of
gravitational free flight and the limited depth of optical traps.

Practical implementation of this approach remains an open challenge.
Spatial light modulators (SLMs) are inherently inefficient, with significant
reductions in output power. Additionally, the efficiency of SLMs varies de-
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pending on the programmed field output, introducing further limitations that
compromise consistent performance. Moreover, the response time of SLMs
is significantly slower than the timescales of particle dynamics and the pro-
tocol requirements, making them unsuitable for real-time adjustments. Ad-
dressing these issues will be crucial for the successful realization of this
method.
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